Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)
\(=2\left(x^2-4x+4\right)+5\)
\(=2\left(x-2\right)^2+5\ge5\forall x\)
Giả sử trước khi làm nhé
\(a)\)\(2x^2-8x+13>0\)
\(\Leftrightarrow\)\(4x^2-16x+26>0\)
\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)
\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng )
Vậy ...
\(b)\)\(-2+2x-x^2< 0\)
\(\Leftrightarrow\)\(x^2-2x+2>0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy ...
Chúc bạn học tốt ~
a ) \(-x^2+4x-5\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1< 0\forall x\left(đpcm\right)\)
b ) \(x^4+3x^2+3=x^4+3x^2+\dfrac{9}{4}+\dfrac{3}{4}=\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)
c ) \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3\)
Đặt \(x^2+2x+3=a\) . Khi đó , ta có :
\(x\left(x+1\right)+3=x^2+x+3=x^2+x+\dfrac{1}{4}+\dfrac{11}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
\(=\left(x^2+2x+3+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
\(=\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\left(đpcm\right)\)
a, x2 - 2x + 3 > 0
Xét : VT = x2 - 2x + 1 + 2 = ( x - 1 )2 + 2 .
Có : ( x - 1 )2 \(\ge\) 0 với mọi x \(\Rightarrow\) ( x - 1 )2 + 2 > 0 với mọi x hay
VT > 0 .
Vậy BĐT x2 - 2x + 3 > 0 đúng .
Các câu còn lại tương tự .
Chúc bn học tốt !!!!!!!!
\(4x^2+y^2+4xy+4x+2y+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right)+1+1\)
\(=\left(2x+y+1\right)^2+1>0\forall x,y\)
Chúc bạn học tốt.
( Câu trả lời bằng hình ảnh minh họa )