\(2^{2018^{2019}}\)  không chia hết cho tổng các số tự nhiên t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

1+2+3+...+2018=(1+2018)+(2+2017)+...+(1010+1019) = 2019 + 2019 +.. +2019  ( 1009 cặp) = 2019×1009 =2037171 => là số lẻ

=> không chia hết

27 tháng 12 2018

từ 1 đến 2018 có 2018 số,1009 số lẻ nên tổng này lẻ mà lủy thừa chẵn nên ko chia hết

21 tháng 10 2018

Lưu ý : 

\(\Rightarrow\)

Ai trả lời được sẽ được tặng 3 k !

Nhanh lên nha các bạn !

21 tháng 10 2018

a, Ta có: \(M=7^{2019}+7^{2018}-7^{2017}.\)

\(=2017^{2017}\left(7^2+7-1\right)=55.2017^{2017}\)

\(=11.5.2017^{2017}⋮11\)

f,\(2P=2^2+2^3+2^4+...+2^{60}+2^{61}\)

\(2P-P=P=\left(2^2+2^3+2^4+...+2^{60}+2^{61}\right)-\left(2+2^2+2^3+...+2^{59}+2^{60}\right)\)

\(P=2^{61}-2\)

12 tháng 1 2019

1 < S < 2

=> S ko phải là số tự nhiên

11 tháng 6 2020

1< S< 2

=> S không phải số tự nhiên

25 tháng 9 2018

Chứng minh làm gì khi đã biết 😂

25 tháng 9 2018

A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)

A=(1+2)  +     2^2(1+2)+    +(2^2018(1+2)

a=3.1+2^2 x 3 +.......+2^2018x3

A=3(1+2^2+....+2^2018)  chia hết cho 3  (vì 3 nhân với số nào cũng chia hết cho 3)

=>A chia hết cho 3

24 tháng 10 2021

TL:

2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019

=> A + 2018 A = 1 +2018^2019

=> 2019 A = 1 + 2018^2019 

=> 2019 A - 1 = 2018^2019 

=> 2019 A -1 là 1 lũy thừa của 2018

24 tháng 10 2021

\(2^{2018}+2^{2019}+2^{2020}\)

\(=2^{2018}.\left(1+2+2^2\right)\)

\(=2^{2018}.\left(1+2+4\right)\)

\(=2^{2018}.7\)

Vì \(=2^{2018}.7\) chia hết cho 7 nên \(2^{2018}+2^{2019}+2^{2020}\) chia hết cho 7

13 tháng 9 2018

1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15\)

\(=6.a+12+3\)

\(=6.\left(x+2\right)+3\)

Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3

Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6

2) Ta có 3 là số lẻ nên 32018 là số lẻ

11 là số lẻ nên 112017 là số lẻ 

Do đó 32018-112017là số chẵn nên chia hết cho 2

3)\(n+4⋮n\)

có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

4)\(3n+7⋮n\)

có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

22 tháng 12 2019

giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương

mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4

ta có 2015^2016 ≡ (-1)^2016 (mod 4);   2016^2017 chia hết cho 4;   2017^2018 ≡ 1^2018 (mod 4);   2018^2019 ≡ 2^2019

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)

<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)

ta có 2^2019=4x2^2017 chia hết cho 4

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí 

=> điều giả sử sai

=>ĐPCM