Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(G< \frac{1-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{200-199}{199.200}\)
\(G< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(G< 1-\frac{1}{200}< 1\)
\(\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{200.200}\)
\(=\frac{1}{4}\left(1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)\)
\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{4}\left(1+1-\frac{1}{100}\right)=\frac{1}{4}\left(2-\frac{1}{100}\right)=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)
\(\frac{2}{7}\)+ \(\frac{5}{14}\)+\(\frac{1}{7}\)+ \(\frac{3}{14}\)=\(\frac{4}{14}\)+\(\frac{5}{14}\)+\(\frac{2}{14}\)+\(\frac{3}{14}\)=\(\frac{14}{14}\)=1
469x281+489x719=469x281+(469+20)x719=469x281+469x719+20x719=469x(281+719)+1438=469x1000+1438=469000+1438=470438
a\(\frac{2}{5}\)+\(\frac{5}{14}\)+\(\frac{1}{7}\)+\(\frac{3}{14}\)=\(\frac{53}{70}\)+\(\frac{1}{7}\)=\(\frac{9}{10}\)+\(\frac{3}{14}\)=\(\frac{39}{35}\)
b\(\frac{1995.1997-1}{1996.1995+1994}\)=3984008001
c 469x281+489x719
=(489-469)x(281+719)
=20x1000
=20000
= 2 x ( 1/2 x 5 + 1/ 5 x 8 + 1/ 8 x 11 + 1/ 11 x 14 + 1/ 14 x 17 )
= 2 x ( 1/2 - 1/5 + 1/5 - 1/8 + ....+1/14 - 1/17)
= 2 x (1/2 - 1/17)
= 2 x 15/34
= 15/17
ĐÚNG THÌ TÍCH CHO MÌNH NHA
CHÚC BẠN HỌC GIỎI
Đặt \(A=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
\(A=\frac{2}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\right)\)
\(A=\frac{2}{3}\cdot\left(\frac{1}{2}-\frac{1}{17}\right)\)
\(A=\frac{2}{3}\cdot\frac{15}{34}=\frac{5}{17}\Rightarrow A< 1\)