Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
a)
\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)
b)
B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)
\(\frac{x+1}{2018}+\frac{x+1}{2019}=\frac{x+1}{2020}+\frac{x+1}{2021}\Leftrightarrow\frac{x+1}{2018}+\frac{x+1}{2019}-\frac{x+1}{2020}-\frac{x+1}{2021}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
KL: ................
\(a^{2020}+b^{2020}=a^{2021}+b^{2021}=a^{2022}+b^{2022}\) (1)
Ta có : \(a^{2021}+b^{2021}=a^{2022}+b^{2022}\)
\(\Leftrightarrow a^{2021}+b^{2021}=a^{2022}+a^{2021}b+b^{2022}+ab^{2021}-a^{2021}b-ab^{2021}\)
\(\Leftrightarrow a^{2021}+b^{2021}=a^{2021}\left(a+b\right)+b^{2021}\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)
\(\Leftrightarrow a^{2021}+b^{2021}=\left(a^{2021}+b^{2021}\right)\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)
\(\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}}\)
(+) Thay \(a=1\)vào \(\left(1\right)\)ta được :
\(b^{2020}=b^{2021}=b^{2022}\Leftrightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}\Leftrightarrow}b=1\left(b>0\right)\)
(+) Thay \(b=1\)vào (1) ta được :
\(a^{2020}=a^{2021}=a^{2022}\Leftrightarrow\orbr{\begin{cases}a=1\\a=0\end{cases}\Leftrightarrow}a=1\left(a>0\right)\)
\(\Rightarrow a=b=1\)\(\Rightarrow a^{2020}+b^{2021}=1^{2020}+1^{2021}=2\)
\(\frac{x+1}{2018}+\frac{x+2}{2019}=\frac{x+3}{2020}+\frac{x+4}{2021}\)
\(\Leftrightarrow\left(\frac{x+1}{2018}-1\right)+\left(\frac{x+2}{2019}-1\right)=\left(\frac{x+3}{2020}-1\right)+\left(\frac{x+4}{2021}-1\right)\)
\(\Leftrightarrow\frac{x-2017}{2018}+\frac{x-2017}{2019}=\frac{x-2017}{2020}+\frac{x-2017}{2021}\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)
\(\Leftrightarrow x-2017=0\)\(\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)
\(\Leftrightarrow x=2017\)
Vậy \(S=\left\{2017\right\}\)
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
\(2019\equiv-1\left(mod2020\right)\Rightarrow2019^{2021}\equiv-1\left(mod2020\right)\)
\(2021\equiv1\left(mod2020\right)\Rightarrow2021^{2023}\equiv1\left(mod2023\right)\)
\(\Rightarrow2019^{2021}+2021^{2023}\equiv-1+1\equiv0\left(mod2020\right)\)
Hay 20192021 + 20212023 chia hết 2020