\(⋮\)10

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(A=2007^{2018}-2007^{2014}\)

\(=2007^{2014}.\left(2007^4-1\right)\)

dễ dàng thấy:  \(2007^4\)có tận cùng là chữ số 1

=>  \(2007^4-1\)có tận cùng là chữ số 0

=>  A  chia hết cho 10

3 tháng 5 2020

yhgfhgfyht

14 tháng 1 2018

Ta có: \(10^{2018}>10^{2017}\Rightarrow10^{2018}+1>10^{2017}+1\Rightarrow A=\frac{10^{2018}+1}{10^{2017}+1}>1\) (1)

\(10^{2007}< 10^{2008}\Rightarrow10^{2007}+1< 10^{2008}+1\Rightarrow B=\frac{10^{2007}+1}{10^{2008}+1}< 1\) (2)

Từ (1) và (2) => A > B

11 tháng 11 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

   \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

   \(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2.\frac{1}{2}-2.\frac{1}{4}-2.\frac{1}{6}-...-2.\frac{1}{100}\)

   \(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

   \(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B=\frac{2018}{51}+\frac{2018}{52}+\frac{2018}{53}+...+\frac{2018}{100}\)

   \(=2018.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{B}{A}=\frac{2018\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}\)

            \(=2018\)

Vậy \(\frac{B}{A}\)là 1 số nguyên

!!!

16 tháng 11 2018

phá ngoặc ra ta có:

A = 2018/2017 - 2018*2019/1004 - 1/2007 +2

    = 1 - 2*(2019 -1)

    = 1 - 4016

    = -4015

18 tháng 3 2019

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{\left(a-b\right)^{2007}}{\left(c-d\right)^{2007}}.\)

mà \(\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{a^{2007}+b^{2007}}{c^{2007}+d^{2007}}\)

=> đpcm

18 tháng 3 2019

\(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\)\(\frac{a^{2007}}{c^{2007}}=\)\(\frac{b^{2007}}{c^{2007}}\)

\(\Rightarrow\)\(\frac{a^{2007}-b^{2007}}{c^{2007}-d^{2007}}=\frac{a^{2007}+c^{2007}}{c^{2007}+d^{2007}}\)

\(\Rightarrow\)\(\frac{\left(a-b\right)^{2007}}{\left(c-d\right)^{2007}}=\frac{a^{2007}+b^{2007}}{c^{2007}+d^{2007}}\)\((đpcm)\)

3 tháng 6 2018

Ta có 200920= 20092x10=(20092)10= 403608110 

Vì 4036081<20092009
Nên 403608110<2009200910

Vậy...
Rồi đó nha 
~ủng hộ dùm~

3 tháng 6 2018

Hì hì mik biết có câu 1 thui

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

12 tháng 4 2017

\(Tacó:10A=\frac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)\(10B=\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)\(Vì:1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)