Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2.\frac{1}{2}-2.\frac{1}{4}-2.\frac{1}{6}-...-2.\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2018}{51}+\frac{2018}{52}+\frac{2018}{53}+...+\frac{2018}{100}\)
\(=2018.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2018\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}\)
\(=2018\)
Vậy \(\frac{B}{A}\)là 1 số nguyên
!!!
phá ngoặc ra ta có:
A = 2018/2017 - 2018*2019/1004 - 1/2007 +2
= 1 - 2*(2019 -1)
= 1 - 4016
= -4015
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{\left(a-b\right)^{2007}}{\left(c-d\right)^{2007}}.\)
mà \(\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{a^{2007}+b^{2007}}{c^{2007}+d^{2007}}\)
=> đpcm
\(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\)\(\frac{a^{2007}}{c^{2007}}=\)\(\frac{b^{2007}}{c^{2007}}\)
\(\Rightarrow\)\(\frac{a^{2007}-b^{2007}}{c^{2007}-d^{2007}}=\frac{a^{2007}+c^{2007}}{c^{2007}+d^{2007}}\)
\(\Rightarrow\)\(\frac{\left(a-b\right)^{2007}}{\left(c-d\right)^{2007}}=\frac{a^{2007}+b^{2007}}{c^{2007}+d^{2007}}\)\((đpcm)\)
Ta có 200920= 20092x10=(20092)10= 403608110
Vì 4036081<20092009
Nên 403608110<2009200910
Vậy...
Rồi đó nha
~ủng hộ dùm~
\(Tacó:10A=\frac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)\(10B=\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)\(Vì:1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
\(A=2007^{2018}-2007^{2014}\)
\(=2007^{2014}.\left(2007^4-1\right)\)
dễ dàng thấy: \(2007^4\)có tận cùng là chữ số 1
=> \(2007^4-1\)có tận cùng là chữ số 0
=> A chia hết cho 10