K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018
chữ E có nghĩa là thuộc nha mấy bạn
20 tháng 12 2018

Gọi ƯCLN(n+3;n+2) là d

ta có: n+3 chia hết cho d

n+2 chia hết cho d

=> n + 3 - n - 2 chia hết cho d

=> 1 chia hết cho d

=> ƯCLN(n+3;n+2) = 1

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

18 tháng 10 2015

Đây là dạng toán quy nạp nha

18 tháng 10 2015

Đây là dạng toán quy nạp nha

23 tháng 5 2016

ta có 1/23<1/1*2*3      1/33<1/2*3*4      1/43<1/3*4*5 .... 1/n3<1/(n-1)*n*(n+1)

Vậy=1/23+1/33+...+1/n3<1/1*2*3+1/2*3*4+.....1/(n-1)*n*(n+1)

Ta có      1/1*2*3      +        1/2*3*4       +...+      1/(n-1)*n*(n+1)

 =1/2*(1/1*2-1/2*3   +      1/2*3-1/3*4    +...+  1/(n-1)*n-1/n*(n+1)

=1/2*(1/2-     1/6      +       1/6   -1/12+..........+1/(n-1)*n-1/n*(n+1)

=1/2*(1/2-1/n*(n+1))

=1/4-1/2n*(n+1)<1/4

Vì 1/2^3+1/3^3+..+1/n^3<1/4-1/2n*(n+1)<1/4

nên =>1/2^3+1/3^3+...+1/n^3<1/4

23 tháng 5 2016

\(< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\)

\(< 2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(< \frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{4\cdot5}-\frac{1}{5\cdot6}+...+\frac{2}{\left(n-1\right)\cdot n}\)

\(< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{2}{\left(n-1\right)\cdot n}\right)\)

\(< \frac{1}{4}-\frac{1}{\left(n-1\right)\cdot n}\)

                                          ĐPCM

4 tháng 10 2023

GIÚP MÌNH VỚI

 

4 tháng 10 2023

Bước 1: Chứng minh công thức đúng cho n = 1. Khi n = 1, ta có: 1² = 1 = 1 . (1 + 1) . (2 . 1 + 1) / 6 = 1. Vậy công thức đúng cho n = 1.

Bước 2: Giả sử công thức đúng cho n = k, tức là 1² + 2² + ... + k² = k . (k + 1) . (2k + 1) / 6. Ta cần chứng minh công thức đúng cho n = k + 1, tức là 1² + 2² + ... + k² + (k + 1)² = (k + 1) . (k + 1 + 1) . (2(k + 1) + 1) / 6.

Bước 3: Chứng minh công thức đúng cho n = k + 1. Ta có: 1² + 2² + ... + k² + (k + 1)² = (k . (k + 1) . (2k + 1) / 6) + (k + 1)² = (k . (k + 1) . (2k + 1) + 6(k + 1)²) / 6 = (k . (k + 1) . (2k + 1) + 6(k + 1) . (k + 1)) / 6 = (k + 1) . ((k . (2k + 1) + 6(k + 1)) / 6) = (k + 1) . ((2k² + k + 6k + 6) / 6) = (k + 1) . ((2k² + 7k + 6) / 6) = (k + 1) . ((k + 2) . (2k + 3) / 6) = (k + 1) . ((k + 1 + 1) . (2(k + 1) + 1) / 6).

Vậy, công thức đã được chứng minh đúng cho mọi số tự nhiên n khác 0.

30 tháng 3 2017

giup mink đi mấy bn