K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

Ta có : 1/a -  1/ ( a+n ) = ( a + n - a ) / [ a*( a + n ) ] .

                                    = n /  [ a*( a + n ) ] .

Vậy bài toán được chúng minh .

12 tháng 8 2018

mơn nhìu nhe :3333

3 tháng 9 2017

Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)

cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng

\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)

phân tích 10^2n = (10^n)^2

10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được

\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)

=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{3^2}\)

=\(\left(\frac{10^n+8}{3}\right)^2\)

vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương

3 tháng 9 2017

bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào

17 tháng 11 2019

Bài 1: 5a+7b chia hết cho 13

=> 35a+49b chia hết cho 13

=> 5(7a+2b)+39b chia hết cho 13

Do 39b chia hết cho 13

=> 5(7a+2b) chia hết cho 13

Mà 5 vs 13 là 2 số nguyên tố cùng nhau

=> 7a+2b chia hết cho 13. (đpcm)

Bài 2:

Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)

Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)

Nếu n>=5 thì n! sẽ có tận cùng là 0 

=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3

Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)

=> Với mọi n>=5 đều loại

vậy n=3. 

Bài 3:

Do 26^3 có 2 chữ số tận cùng là 76

26^5 có 2 chữ số tận cùng là 76

26^7 có 2 chữ sốtận cùng là 76

Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76

Vậy 26^2019 có 2 chữ số tận cùng là 76.

a: f(1)=1

=>\(a\cdot1^2+b\cdot1+1=1\)

=>a+b=0

f(-1)=3

=>\(a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+1=3\)

=>a-b=2

mà a+b=0

nên \(a=\dfrac{2+0}{2}=1;b=2-1=1\)

b: a=1 và b=1 nên \(f\left(x\right)=x^2+x+1\)

\(\Leftrightarrow\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\)

Gọi d=ƯCLN(n^2+n+1;n)

=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n\left(n+1\right)⋮d\end{matrix}\right.\)

=>\(\left(n^2+n+1\right)-n\left(n+1\right)⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n^2+n+1;n)=1

=>\(\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\) là phân số tối giản

15 tháng 8 2019

Ta có : \(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}\)

- Vì \(\frac{1+2a}{15}=\frac{7-3a}{20}\)

=> \(20\left(1+2a\right)=15\left(7-3a\right)\)

\(\Leftrightarrow20+40a=105-45a\Leftrightarrow40a+45a=105-20\)

\(\Leftrightarrow95a=95\Leftrightarrow a=1\)

- Thay a = 1 vào phương trình \(\frac{7-3a}{20}=\frac{3b}{23+7a}\) , ta có : \(\frac{7-3.1}{20}=\frac{3b}{23+7.1}\)

\(\Leftrightarrow\frac{4}{20}=\frac{3b}{30}\Leftrightarrow\frac{1}{5}=\frac{b}{10}\Leftrightarrow5b=10\Leftrightarrow b=2\)

Vậy a =1 , b = 2

30 tháng 11 2015

chứng tỏ rằng ƯCLN của tử và mẫu =1