K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

\(\frac{9}{10!}+\frac{10}{11!}+...+\frac{999}{1000!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+...+\frac{1000-1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)

\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)

                         đpcm

Tham khảo nhé~

26 tháng 8 2016

Đặt \(S=\frac{1}{10^2}+\frac{1}{11^2}+\frac{1}{12^2}+.....+\frac{1}{2014^2}\)

Ta có : \(S< \frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+.....+\frac{1}{2013.2014}\\\)

Đặt \(A=\frac{1}{9.10}+\frac{1}{10.11}+....+\frac{1}{2013.2014}\\ =>A=\left(\frac{1}{9}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{11}\right)+......+\left(\frac{1}{2013}-\frac{1}{2014}\right)\\ =>A=\frac{1}{9}-\frac{1}{2014}\\ \)

Vậy A<\(\frac{1}{9}\)

Mà A>S =>S<\(\frac{1}{9}\)

1 tháng 11 2015

\(A=1+4+4^2+...+4^{99}\)

\(A=\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{96}+4^{97}+4^{98}+4^{99}\right)\)

\(A=85+4^7\left(1+4+4^2+4^3\right)...+4^{96}\left(1+4+4^2+4^3\right)\)

\(A=85+4^7.85+...+4^{96}.85\)

\(A=85.\left(1+4^7+...+4^{96}\right)\)

Vì 85 chia hết cho 17 nên A chia hết cho 17

 

 

16 tháng 7 2016

ko thể cm

28 tháng 7 2016

K thể chứng minh vì nó vốn k có dạng viết tắt thành phân số

làm được bài 1:

TA CÓ: \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{16}\right)^{200}\)

            \(\left(\frac{1}{2}\right)^{1000}=\left(\frac{1}{2}\right)^{5.200}=\left(\frac{1^5}{2^5}\right)^{200}=\left(\frac{1}{32}\right)^{200}\)

vì mũ số bằng nhau nên ta so sánh phân số. Vì \(\frac{1}{16}>\frac{1}{32}\)nên \(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{32}\right)^{200}\)do đó\(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{1000}\)

26 tháng 4

chịu

 

14 tháng 6 2015

\(\Leftrightarrow2-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)>0\)

Ta có: \(\frac{1}{2^{12}}-1=\left(\frac{1}{2}-1\right)\left(\frac{1}{2^{11}}+\frac{1}{2^{10}}+\frac{1}{2^9}+...+\frac{1}{2}+1\right)\)

\(\Rightarrow1+\frac{1}{2}+...+\frac{1}{2^{11}}=2\left(1-\frac{1}{2^{12}}\right)=2-\frac{1}{2^{11}}\)

\(\Rightarrow2-\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)=2-\left(2-\frac{1}{2^{11}}\right)=\frac{1}{2^{11}}>0\left(đpcm\right)\)

12 tháng 5 2017

1-1/2-1/2^2-......-1/2^11

ta có:1-1/2-1/2^2-.....-1/2^11=1-(1/2+1/2^2+....+1/2^11)

A=1/2+1/2^2+1/2^3+...+1/2^11

2A=2.(1/2+1/2^2+1/2^3+...+1/2^11)

2A=2.1/2+2.1/2^2+....+2.1/2^11

2A-A=(1+1/2^2+1/2^3+...+1/2^10)-(1/2+1/2^2+1/2^3+....+1/2^11)

A=1-1/2^11=2048/2048-1/2048=2047/2048

vì 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-A

=> 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-2047/2048=2048/2048-2047/2048=1/2048=1/2^11

vậy 1-1/2-1/2^2-1/2^3-...-1/2^11=1/2^11

16 tháng 9 2017

chung minh thu ha ban