Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
10n−9n−1=(10n−1)−9n=99999.....99999−9n10n−9n−1=(10n−1)−9n=99999.....99999−9n(n chữ số 9)
=9(1111.....111−n)=9(1111.....111−n)(n chữ số 1)
Thấy : 1111.....1111111.....111(n chữ số 1) có tổng các chữ số là n
Nên 1111....111−n⋮31111....111−n⋮3
Vì n ⋮3 thì cũng ⋮81
⇒9(1111....1111−n)⇒9(1111....1111−n)(n chữ số 1) chia hết cho 81
Hay 10n−9n−1⋮2710n−9n−1⋮81(đpcm)
# Chúc bạn học tốt
\(B=10^n+72n-1\)
\(=10^n-1-9n+81n\)
\(=99...9-9n+81n\)(\(n\)chữ số \(9\))
\(=9\times11...1-9n+81n\)(\(n\)chữ số \(1\))
\(=9\times\left(11...1-n\right)+81n\)(\(n\)chữ số \(1\))
Ta có: \(11...1-n⋮9\)(\(n\)chữ số \(1\)) vì tổng các chữ số của \(11...1\)là \(n\)nên \(11...1\equiv n\left(mod9\right)\).
Do đó \(9\times\left(11...1-n\right)⋮81\Leftrightarrow B⋮81\).
10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Ta có:
\(\left(3n\right)^{100}=3^{100}.n^{100}\)
\(=3^4.3^{96}.n^{100}\)
\(=81.3^{96}.n^{100}⋮81\)
Vậy ....
Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)
Vậy...
~~~~~~~~~~~~~
Với n=1 => \(10^1-9.1-1=0\) chia hết cho 81
Giả sử \(10^k-9k-1\) chia hết cho 81
Ta cần c/m \(10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81
\(10^{k+1}-9k-1=10.10^k-9k-9-1=\)
\(=\left(10^k-9k-1\right)+9.\left(10^k-1\right)\)
Ta có \(10^k-9k-1\) chia hết cho 81
Ta có \(9\left(10^k-1\right)=9x999....99\) (k chữ số 9)\(=9.9\left(1111...111\right)=81.1111...11\) (k chữ số 1) chia hết cho 81
\(\Rightarrow10^{k+1}-9\left(k+1\right)-1\) chia hết cho 81
\(\Rightarrow10^n-9n-1\) chia hết cho 81 với mọi n