Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(1+5+5^2)+...+5^402(1+5+5^2)
=31+...+5^402.31
=31(1+...+5^402) chia hết cho 31
\(1+5+5^2+...+5^{404}=\left(1+5+5^2\right)+...+\left(5^{400}+5^{401}+5^{402}\right)=31+31.5^3+...+31.5^{400}\)
\(=31\left(1+5^3+5^6+...+5^{400}\right)\)chia hết cho 31
Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)
= \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)
= \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)
= \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)
= \(31\cdot1+...+31\cdot5^{402}\)
= \(31\cdot\left(1+...+5^{402}\right)⋮31\)
Vậy tổng trên chia hết cho 31
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
\(1+5+5^2+...+5^{404}\)
\(=5^3\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{404}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
\(=31.\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
Vậy tổng trên chia hết cho 31
1 + 5 + 52 + .... + 5404
= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 5403 + 5404 )
= 6 + 52 . ( 1 + 5 ) + ... + 5403 . ( 1 + 5 )
=6 + 52 . 6 + ... + 5403 . 6
= 6 . ( 1 + 52 + ... + 5403 )
= 3 . 2 . ( 1 + 52 + .... + 5403 ) chia hét cho 3
=> B=(1+5+52)+(53+54+55)+...........+(5402+5403+5404)
=> B= 1.(1+5+52)+53.(1+5+52)+.........+5402.(1+5+52)
=> B=1.31+53.31+...........+5402.31
=> B=31.(1+53+........+5402)
Vì 31 chia hết cho 31 => 31.(1+53+............+5402) chia hết cho 31
=> B chia hết cho 31 ĐPCM
\(1+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)
\(=\left(1+5^2+5^3\right)+\left(5^3+5^4+5^5\right)+....\left(5^{402}+5^{403}+5^{504}\right)\)
\(=1\left(1+5+5^2+5^3\right)+5^3\left(1+5+5^2+5^3\right)+....+5^{402}\left(1+5+5^2+5^3\right)\)
\(=1.31+5^3.31+....+5^{302}.31\)
\(=31\left(1+5^3+...+5^{402}\right)\)
Vì có thừa số chung là 31 nen tổng trên chia hết cho 31. Vậy...
bn giải thiều rùi bởi vì 1 + 5 + 5^2 ..............chứ bn giải ko có số 5 kìa