Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăt S = \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)
S có 20 số hạng.Nhóm thành 2 nhóm,mỗi nhóm có 10 số hạng
Ta có: S = \(\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)\)
=> S < \(\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
=> S < \(\frac{10}{20}+\frac{10}{30}\)
=> S < \(\frac{50}{60}=\frac{5}{6}\) (1)
Lại có:S > \(\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
=> S > \(\frac{10}{30}+\frac{10}{40}\)
=> S > \(\frac{70}{120}=\frac{7}{12}\) (2)
Từ (1) và (2) => \(\frac{7}{12}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{5}{6}\) (đpcm)
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
Ta có : \(R=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{39}\)
= \(\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}\right)\)
10 hạng tử 10 hạng tử
\(>\left(\frac{1}{29}+\frac{1}{29}+...+\frac{1}{29}\right)+\left(\frac{1}{39}+\frac{1}{39}+...+\frac{1}{39}\right)\)
10 hạng tử 1/29 10 hạng tử 1/39
\(=\frac{10}{29}+\frac{10}{39}>\frac{10}{30}+\frac{10}{40}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\Rightarrow R>\frac{7}{12}\left(1\right)\)
Lại có : \(R=\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}\right)\)
10 số hạng 10 số hạng
\(>\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)=\frac{10}{20}+\frac{10}{30}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
=> \(R>\frac{5}{6}\left(2\right)\)
Từ (1) và (2) => \(\frac{7}{12}< R< \frac{5}{6}\left(\text{ĐPCM}\right)\)
\(A=\frac{1}{2}+\frac{1}{12}+...+\frac{1}{9900}>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\left(1-\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)-\frac{1}{100}<\left(1-\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{6}\)
Vậy đpcm