Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=6+6^2+6^3+...+6^{99}\)
\(Q=\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+...+\left(6^{97}+6^{98}+6^{99}\right)\)
\(Q=6\cdot\left(1+6+36\right)+6^4\cdot\left(1+6+36\right)+6^{97}\cdot\left(1+6+36\right)\)
\(Q=43\cdot6+6^4\cdot43+...+6^{97}\cdot43\)
\(Q=43\cdot\left(6+6^4+...+6^{97}\right)\) ⋮ 43
Vậy: Q ⋮ 43
\(D=6+6^2+6^3+6^4+...+6^{120}\)
\(=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{119}+6^{120}\right)\)
\(=6\left(1+6\right)+6^3\left(1+6\right)+...+6^{119}\left(1+6\right)\)
\(=7\left(6+6^3+...+6^{119}\right)\)chia hết cho \(7\).
\(D=6+6^2+6^3+6^4+...+6^{120}\)
\(=\left(6+6^2+6^3\right)+...+\left(6^{118}+6^{119}+6^{120}\right)\)
\(=6\left(1+6+6^2\right)+...+6^{118}\left(1+6+6^2\right)\)
\(=43\left(6+...+6^{118}\right)\)chia hết cho \(43\).
\(M=1+6+6^2+6^3+...+6^{2012}\)
\(M=\left(1+6\right)+6^2.\left(6+1\right)+...+6^{2011}.\left(6+1\right)\)
\(M=43.\left(1+6^2+...+6^{2011}\right)\Rightarrow M\) luôn chia hết cho 43
\(M=1+6+6^2+6^3+....+6^{2012}\)
\(M=\left(1+6+6^2\right)+.....+\left(6^{2010}+6^{2011}+6^{2012}\right)\)
\(M=\left(6^0.1+6^0.6+6^0.6^2\right)+.....+\left(6^{2010}.1+6^{2010}.6+6^{2010}.6^2\right)\)
\(M=1.\left(1+6+6^2\right)+.....+6^{2010}.\left(1+6+6^2\right)\)
\(M=1.43+.....+6^{2010}.43\)
\(M=43.\left(1+....+2^{2010}\right)⋮43\left(đpcm\right)\)
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
a) Chữ số tận cùng của \(21\)là \(1\)nên chữ số tận cùng của \(21^x\)với \(x\)là số tự nhiên là \(1\).
Chữ số tận cùng của tổng \(M\)là chữ số tận cùng của \(1+1+1+...+1+1=10\)là chữ số \(0\).
Do đó \(M\)chia hết cho \(10\)nên \(M\)chia hết cho \(2\)và \(5\).
b) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+...+\left(6^{97}+6^{98}+6^{99}\right)\)
\(Q=6\left(1+6+6^2\right)+6^4\left(1+6+6^2\right)+...+6^{97}\left(1+6+6^2\right)\)
\(Q=\left(1+6+6^2\right)\left(6+6^4+...+6^{97}\right)\)
\(Q=43\left(6+6^4+...+6^{97}\right)⋮43\).
Bài 1:
a: 76-6(x-1)=10
\(\Leftrightarrow x-1=11\)
hay x=12
c: \(5x+15⋮x+2\)
\(\Leftrightarrow x+2=5\)
hay x=3