Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)
\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)
Vậy phương trình vô nghiệm
p/s: mk ko bt cách trình bài => sai sót bỏ qua
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+\left(x^2-x+\frac{1}{4}\right)+\left(x^2+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)=0\)
Có : \(\left(x^2-x\right)^2\ge0\)
\(\left(x-1\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(x^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)\ge\frac{3}{4}\)
Vậy phương trình vô nghiệm.(ĐPCM)
a) Khi \(m=-4\) phương trình trở thành:
\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)
\(\Leftrightarrow0.x^2=0\)
Đúng với mọi x.
b) Khi \(m=-1\) phương trình trở thành:
\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)
\(\Leftrightarrow0.x^2=3\)
Phương trình vô nghiệm.
c) Khi \(m=-2\) phương trình trở thành:
\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)
\(\Leftrightarrow-2.x^2=2\)
\(\Leftrightarrow x^2=-1\)
Phương trình này cũng vô nghiệm.
Khi \(m=-3\) phương trình trở thành:
\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)
\(\Leftrightarrow-2x^2=1\)
\(\Leftrightarrow x^2=-\dfrac{1}{2}\)
Phương trình cũng vô nghiệm.
d) Khi \(m=0\) phương trình trở thành:
\(\left[0^2+5.0+4\right]x^2=0+4\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
Phương trình có hai nghiệm là \(x=1,x=-1\).
troi oi anh oi kho nhu vay lam sao ma lam duoc vay de hay la em len hoi thay giao em nhe thay em chinh la bo cua em day va bo em chinh la hieu pho cua truong thcs doan ket
Ta có:\(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)=0\)
Vì \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
và\(x^2+1\ge1\)
nên \(\left(x^2-x+1\right)\left(x^2+1\right)\ge\frac{3}{4}\)
Vậy Pt trên vô nghiệm
\(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4+x^2-x^3-x+x^2+1=0\)
\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x^2+1=0\)( do \(x^2-x+1\)là bình phương thiếu nên không thể bằng 0)
\(\Leftrightarrow x^2=-1\)( vô lý )
Do đó : Phương trình đã cho vô nghiệm
Ta có \(\Leftrightarrow x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow x^4+x^2+x^3+x+x^2+1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=0\left(ktm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)
=> Pt vô nghiệm
đpcm.
\(x^4+x^3+x^2+x+1=0\)
\(\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Rightarrow x^5-1=0\)
\(\Rightarrow x^5=1\)
\(\Rightarrow x=1\)
Nhưng thay vào PT ko đúng nên PT vô nghiệm
đây là hệ phương trình hay 2 phương trình khác nhau mà có dấu = lại ghi là các
bạn đánh lên google đi có đó