K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

Xét hàm số f ( x ) = ( m 2 - 2 m + 2 ) x 3 + 3 x - 3 . Đây là hàm đa thức nên f(x) liên tục trên R.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Suy ra: phương trình f(x) = 0 có ít nhất một nghiệm c ∈ (0;1)

NV
19 tháng 3 2021

1.

Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)

\(f\left(x\right)\) xác định và liên tục trên R

\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)

\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)

\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)

\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)

\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)

\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)

Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt

NV
19 tháng 3 2021

2.

Đặt \(t=g\left(x\right)=x.cosx\)

\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)

\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)

Hàm \(f\left(t\right)\) xác định và liên tục trên R

\(f\left(1\right)=1>0\)

\(f\left(-2\right)=-8< 0\)

\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

** PT thì phải có dấu bằng chứ bạn.

Đặt $f(x)=x^4+x^3-3x^2+x+1$. CMR $f(x)=0$ luôn có nghiệm

---------------------------

Lời giải:

Dễ thấy $f(x)$ liên tục trên $\mathbb{R}$

Ta có:

$f(0)=1>0$

$f(-1)=-3<0$

$\Rightarrow f(0).f(-1)<0$. Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-1;0)$

$\Rightarrow f(x)=0$ luôn có nghiệm.

NV
9 tháng 3 2022

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)

Hàm \(f\left(x\right)\) liên tục trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty\)

\(\Rightarrow\) Luôn tồn tại \(a>0\) sao cho \(f\left(a\right)>0\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(f\left(-1\right)=m^2+1>0;\forall m\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty.1=-\infty\)

\(\Rightarrow\) Luôn tồn tại \(b< 0\) sao cho \(f\left(b\right)< 0\Rightarrow f\left(b\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho luôn có ít nhất 3 nghiệm thực

10 tháng 3 2022

có dấu hiệu nào để mình biết xét từ khoảng nào kh ạ?

NV
19 tháng 3 2022

Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(1\right)=-2< 0\)

\(f\left(2\right)=13>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (1;2)

\(f\left(-2\right)=13>0\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (-2;1)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm phân biệt

NV
22 tháng 3 2022

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left(\sqrt{x-2}\right)^3+m\left(x-2\right)=1\)

Đặt \(\sqrt{x-2}=t\ge0\)

\(\Rightarrow t^3+mt^2=1\Leftrightarrow t^3+mt^2-1=0\)

Đặt \(f\left(t\right)=t^3+mt^2-1\)

Hàm \(f\left(t\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{t\rightarrow+\infty}f\left(t\right)=\lim\limits_{t\rightarrow+\infty}\left(t^3+mt^2-1\right)=\lim\limits_{t\rightarrow+\infty}t^3\left(1+\dfrac{m}{t}-\dfrac{1}{t^3}\right)=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 giá trị \(t_0>0\) sao cho \(f\left(t_0\right)>0\)

\(\Rightarrow f\left(0\right).f\left(t_0\right)< 0\Rightarrow f\left(t\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;t_0\right)\) hay 1 nghiệm \(t>0\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm \(x=2+t^2>2\)

18 tháng 2 2021

\(pt:\left(-x^2+3x-2\right)m+3x-5=0\)

\(\Leftrightarrow-x^2m+3mx-2m+3x-5=0\)

\(\Leftrightarrow-x^2m+\left(3m+3\right)x-2m-5=0\)

pt co nghiem \(\Leftrightarrow\Delta=\left(3m+3\right)^2-4m\left(2m+5\right)\ge0\)

\(\Leftrightarrow9m^2+18m+9-8m^2-20m\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+8>0\left(ld\right)\)

Vay pt luon co nghiem voi moi m

 

NV
15 tháng 3 2022

Tìm 2 giá trị của x để hàm \(f\left(x\right)\) nhận kết quả trái dấu là được.

a.

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-1< 0\) (chọn \(x=0\) do nó làm triệt tiêu tham số m, thường sẽ ưu tiên chọn những giá trị x kiểu thế này. Ở câu này, có đúng 1 giá trị x khiến m triệt tiêu nên phải chọn thêm)

\(f\left(-1\right)=m^2-1+6-1=m^2+4>0\) với mọi m (để ý rằng ta đã có \(f\left(0\right)\) âm nên cần chọn x sao cho \(f\left(x\right)\) dương, mà \(-m^2\) nên ta nên chọn x sao cho nó chuyển dấu thành \(m^2\))

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0;\forall m\)

\(\Rightarrow\) Hàm luôn có ít nhất 1 nghiệm thuộc  \(\left(-1;0\right)\) với mọi m

Hay với mọi m thì pt luôn luôn có nghiệm

NV
15 tháng 3 2022

b.

Đặt \(f\left(x\right)=\left(m^2+m+5\right)\left(3-x\right)^{2021}x+x-4\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=-4< 0\) 

(Tới đây, nếu ta chọn tiếp \(x=3\) để triệt tiêu m thì cho \(f\left(3\right)=-1\) vẫn âm, ko giải quyết được vấn đề, nên ta phải chọn 1 giá trị khác. Thường trong những trường hợp xuất hiện \(m^2\) thế này, cố gắng chọn x sao cho hệ số của \(m^2\) dương (nếu cần \(f\left(x\right)\) dương, còn cần \(f\left(x\right)\) âm thì chọn x sao cho hệ số \(m^2\) âm). Ở đây dễ nhất là chọn \(x=2\) , vì khi đó \(\left(3-2\right)^{2021}=1\) vừa đảm bảo hệ số \(m^2\) dương vừa dễ tính toán, nếu chọn \(x=1\) cũng được thôi nhưng quá to sẽ rất khó biến đổi)

\(f\left(2\right)=\left(m^2+m+5\right).\left(3-2\right)^{2021}.2+2-4=2\left(m^2+m+5\right)-2\)

 \(=2m^2+2m+8=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{2}>0;\forall m\)

\(\Rightarrow f\left(0\right).f\left(2\right)< 0;\forall m\Rightarrow\) hàm luôn có ít nhất 1 nghiệm thuộc \(\left(0;2\right)\) với mọi m

Hay pt đã cho luôn có nghiệm với mọi m