K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Ta gọi biểu thức là:
\(A = x^{3} + \left[\right. \left(\right. x^{2} - 2 x + 2 \left.\right)^{2} - x \left(\right. x^{3} + 8 x - 7 \left.\right) - 4 \left]\right.\)
Bước 1: Khai triển và rút gọn
Tính \(\left(\right. x^{2} - 2 x + 2 \left.\right)^{2}\):
\(\left(\right. x^{2} - 2 x + 2 \left.\right)^{2} = x^{4} - 4 x^{3} + 8 x^{2} - 8 x + 4\)
Tính \(x \left(\right. x^{3} + 8 x - 7 \left.\right)\):
\(x \left(\right. x^{3} + 8 x - 7 \left.\right) = x^{4} + 8 x^{2} - 7 x\)
Thay vào biểu thức \(A\):
\(A = x^{3} + \left[\right. \left(\right. x^{4} - 4 x^{3} + 8 x^{2} - 8 x + 4 \left.\right) - \left(\right. x^{4} + 8 x^{2} - 7 x \left.\right) - 4 \left]\right.\)
Rút gọn:
\(A = x^{3} + \left[\right. x^{4} - 4 x^{3} + 8 x^{2} - 8 x + 4 - x^{4} - 8 x^{2} + 7 x - 4 \left]\right.\) \(A = x^{3} + \left(\right. - 4 x^{3} - x \left.\right)\) \(A = x^{3} - 4 x^{3} - x = - 3 x^{3} - x\)
Bước 2: Phân tích A
\(A = - 3 x^{3} - x = - x \left(\right. 3 x^{2} + 1 \left.\right)\)
Bước 3: Chứng minh chia hết cho 6
-Với mọi \(x \in \mathbb{Z}\), thì:
-Nếu \(x\) chẵn → chia hết cho 2
-Nếu \(x\) bội của 3 → chia hết cho 3
→ Luôn có \(A\) chia hết cho 6 với mọi \(x \in \mathbb{Z}\)
Vậy biểu thức A chia hết cho 6.
Đặt \(A=x^3+\left\lbrack\left(x^2-2x+2\right)^2-x\left(x^3+8x-7\right)-4\right\rbrack\)
\(=x^3+\left\lbrack x^4+4x^2+4-4x^3+4x^2-8x-x\left(x^3+8x-7\right)-4\right\rbrack\)
\(=x^3+\left\lbrack x^4-4x^3+8x^2-8x-x^4-8x^2+7x\right\rbrack\)
\(=x^3+\left(-4x^3-x\right)=-3x^3-x\)
Khi x=1 thì \(A=-3\cdot1^3-1=-3-1=-4\) không chia hết cho 6
=>Đề sai rồi bạn