K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2020

Gọi d là ƯC(14n + 3 ; 21n + 5)

\(\Rightarrow\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\)

=> ( 42n + 10 ) - ( 42n + 9 ) chia hết cho d

=> 42n + 10 - 42n - 9 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(14n + 3 ; 21n + 5) = 1

=> \(\frac{14n+3}{21n+5}\)tối giản ( đpcm )

28 tháng 2 2015

GOI UCLN(21N+5;14N+3)LA D

{21N+5 CHIA HẾT CHO D

{14N+3 CHIA HET CHO D

BCNN(21;14)=7.3.2=42

{3.(21N+5)CHIA HẾT CHO D

{2.(14N+3) CHIA HẾT CHO D

{42.N+21 CHIA HẾT CHO D

{42N+22CHIA HET CHO D

=42N+21-42N+22 CHIA HET CHO D

=1CHIA HET CHO D

=D=1

DD
15 tháng 7 2021

Đặt \(d=\left(21n+4,14n+3\right)\)

Suy ra 

\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

4 tháng 3 2022

-Gọi \(ƯCLN\left(14n+3;21n+4\right)=a\).

-Có: \(\left(14n+3\right)⋮a\)

\(\Rightarrow\left[3.\left(14n+3\right)\right]⋮a\)

\(\Rightarrow\left(42n+9\right)⋮a\) (1)

-Có: \(\left(21n+4\right)⋮a\)

\(\Rightarrow\left[2\left(21n+4\right)\right]⋮a\)

\(\Rightarrow\left(48n+8\right)⋮a\) (2)

-Từ (1) và (2) suy ra:

\(\left[\left(48n+9\right)-\left(48n+8\right)\right]⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\in\left\{1;-1\right\}\)

-Vậy \(\dfrac{14n+3}{21n+4}\) là phân số tối giản.

12 tháng 1 2022

Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )

Khi đó:  2 ( 21n + 4 ) ⋮ d  và 3 ( 14n + 3 ) ⋮ d

hay 42n + 8 ⋮ d    và 42n + 9 ⋮ d

Suy ra   42n + 9 - 42n + 8 ⋮ d   ⇒ 1 ⋮ d

Vậy d = 1 

Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên

Gọi d=UCLN(14n+3;21n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: 14n+3/21n+4 là phân số tối giản

31 tháng 7 2016

gọi UCLN( 14n +3 , 21n +4 ) =d  (1)

=> 21n+4  và 14n+3 chia hết cho d => 21n+4 - 14n-3  chia hết cho d 

=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d 

=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2) 

từ (1) ,(2) => dpcm

9 tháng 4 2017

Gọi UCLN(14n+3,21n+4) =a

ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a

suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a

suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a

suy ra (14n+3) - (14n+2) chia hết cho a

suy ra 14n+3 - 14n-2 chia hết cho a

 suy ra 1 chia hết cho a

và a thuộc U(1) = 1

Vậy 14n+3/14n+4 là phân số tối giản

chúc bạn học tốt

29 tháng 2 2016

a,Gọi d=(14n+3;21n+5)

=>14n+3 (2)  và 21n+5 chia hết cho d 

=>70n+15 và 63n+15 chi hết cho d => 7n chia hết cho d => 14n chia hết cho d (1)

Từ (1) và (2) => 3 chia hết cho d => d= 3 hoặc 1

+, Nếu d=3 => 21n+5 chia hết cho 3 => 5 chia hết cho 3 (vô lý) => d=1 =>đpcm

b, Gọi d=(16n+5;24n+7)

=> 16n+5 (4)  và 24n+7 chia hết cho d

=>8n+2 chia hết cho d =>16n+4 chia hết cho d (3)

Từ (3) và (4) => d=1

24 tháng 8 2015

gọi d là ƯCLN của 21n+4 và 14n+3

=> 21n+4 chia hết cho d  =>2.(21n+4) chia hết cho d

     14n+3 chia hết cho d  =>3.(14n+3) chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)={1}

=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)

27 tháng 1 2017

Khó nhỉ

DD
8 tháng 11 2021

Đặt \(\left(14n+3,21n+5\right)=d\).

Suy ra 

\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

23 tháng 4 2023

Khó dữ zậy