K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

N
5 tháng 5 2016

Gọi d là UCLN﴾n;n+1﴿

Suy ra: n chia hết cho d; n+1 chia hết cho d ﴾1﴿

=> ﴾n+1﴿‐n chia hết cho d

=> 1 chia hết cho d ﴾2﴿

Từ ﴾1﴿ và ﴾2﴿ => d=+1

Vậy n/n+1 là phân số tối giản 

5 tháng 5 2016

Gọi d là UCLN(n;n+1)
Suy ra: n chia hết cho d; n+1 chia hết cho d (1)
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d  (2)
Từ (1) và (2) => d=+1
Vậy n/n+1 là phân số tối giản

27 tháng 4 2016

Gọi d là ƯC của n và n+1

=> n chia hết cho d và n+1 chia hết cho d

=> (n+1)-n chia hết d

=> 1 chia hết cho d

=> n/n+1 là p/s tối giản

27 tháng 4 2016

b;Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\) là phân số tối giản

7 tháng 6 2015

b;Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\)là phân số tối giản

7 tháng 6 2015

Giải:

 

Gọi ƯCLN (n;n+1) là :d

Ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy n/n+1 là  phân số tối giản.

Chúc bạn học tốt^_^

 

 
14 tháng 5 2015

để n/n+1 là ps  tối giản thì ƯCLN(n,n+1) = 1

gọi d là ƯCLN(n,n+1)

=> n chia hết cho d và n+1 chia hết cho d

=> (n+1 - n) chia hết cho d

hay 1 chia hết cho d 

=> d = 1

suy ra ƯCLN(n,n+1) =1

vậy ps n/n+1 là ps tối giản

10 tháng 4 2015

Gọi d là UCLN(n;n+1)
Suy ra: n chia hết cho d; n+1 chia hết cho d (1)
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d  (2)
Từ (1) và (2) => d=+1
Vậy n/n+1 là phân số tối giản

10 tháng 4 2015

vì n và n+1 là hai số nguyên tố cùng nhau

Gọi d=ƯCLN(n+1;n)

=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)

=>\(n+1-n⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n+1;n)=1

=>\(\dfrac{n+1}{n}\) là phân số tối giản

4 tháng 4 2020

Gọi \(\left(2n+1,n\right)\) là \(d\).

\(\left(2n+1,n\right)\) là \(d\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\n⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-n⋮d\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\left(2n+1,n\right)=1\)

\(\Rightarrow2n+1\)và \(n\)là 2 SNT cùng nhau

\(\Rightarrow\)Phân số \(\frac{2n+1}{n}\)tối giản  (đpcm)

4 tháng 4 2020

Đặt: ( 2n + 1 ; n ) = d 

=> ( 2n + 1 - n ; n ) = d 

=> (n + 1; n ) = d 

=> ( n + 1 - n ; n ) = d 

=> (1; n ) = d 

=> d = 1 

Như vậy: ( 2n + 1; n ) = 1 =>  2n + 1; n  là hai số nguyên tố cùng nhau 

=> M là phân số tối giản

Gọi d là UWCLN(2n+1,2n(n+1))=1

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\Rightarrow n\left(2n+1\right)⋮d\Rightarrow2n^2+n⋮d\\2n\left(n+1\right)⋮d\Rightarrow2n^2+2n⋮d\end{cases}}\)

\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\Rightarrow2n⋮d\)

\(2n+1⋮d\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Suy ra 2n+1 và 2n(n+1) nguyên tố cùng nhau hay phân số 2n+1/2n(n+1) tồi giản(đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 1 2022

$n+2^n$ là số số tự nhiên với $n\in\mathbb{N}^*$. Bạn xem lại đề.

1 tháng 3 2022

n+2 trên n là p|s nha bn ^^

6 tháng 5 2016

Ta thấy : (với \(n\in N\)) thì n + 1 > n.

Giả sử như \(\frac{n}{n+1}\)chưa tối giản thì n + 1 phải chia hết cho n và n khác 1. 

=> n + 1 chia hết cho n

=> 1 chia hết cho n

=> n = 1 

=> loại 

Vậy \(\frac{n}{n+1}\) là phân số tối giản.

 

6 tháng 5 2016

Gọi d là Ước chung của n và n+1

Ta co:

n chia hết cho d

n+1 chia het cho d

=> n+1 - n chia hết cho d

=> 1 chia het cho d

Vậy n và n+1 là 2 số nguyên tố cùng nhau

=> n/n+1 la phan so toi gian.