Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Gọi U7CLN(4n+1;6n+1)=b
ta có : 4n+1 chia hết cho b ; 6n+1 chia hết cho b
suy ra : 3(4n+1) chia hết cho b : 2(6n+1) chia hết cho b
suy ra : [3(4n+1)-2(6n+1)] chia hết cho b
[(12n+3)-(12n+2)] chia hết cho b
12n+3-12n-2 chia hết cho b
suy ra : 1 chia hết cho b nên b=1
suy ra ƯCLN(4n+1;6n+1)=1
suy ra : 4n+1/6n+1 là phân số tối giản
2n+1/4n+1
Gọi d là ƯC của 2n+1 và 4n+1
=> d=2n+1 :4n+1
=> (2n+1: 4n+1 ): d
=>[ 2.(2n+1)-1.(4n+1)]
=>4n+2-4n-1
=>d=1
Vậy phân số trên là phân số tối giản
\(\dfrac{n^3+5n+1}{n^4+6n^2+n+5}=\dfrac{n^3+5n+1}{n\left(n^3+5n+1\right)+n^2+1}=1+\dfrac{1}{n^2+1}\)
Vì \(\dfrac{1}{n^2+1}\)là phân số tối giản nên\(\frac{n^3+5n+1}{n^4+6n^2+n+5}\)là phân số tối giản(đpcm)
Gọi d = ƯCLN( 7n + 10, 5n + 7 )
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)
\(\Rightarrow35n+50-35n-49⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\)ƯCLN( 7n + 10, 5n + 7 ) = 1
\(\Rightarrow\)Phân số\(\frac{7n+10}{5n+7}\) là phân số tối giản.
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
Gọi d là ƯCLN(12n+1;30n+2)
Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà \(n\in N\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản ĐPCM
Giải:
Gọi d = UCLN ( 12n + 1; 30n + 2 )
Ta có:
\(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\)
\(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)
Vì \(d\in N\) nên d = 1
Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.
\(\Rightarrowđpcm\)