Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số nguyên tố > 3 thì sẽ có dạng 3k + 1 hoặc 3k + 2
Với p= 3k + 1 suy ra p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 là hợp số
Vậy : p=3k + 2 .Ta có : p + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 ( 1 )
Vì : p là SNT > 3 suy ra PLA số lẻ , suy ra p + 1 là số chẵn ( số lẽ + số lẽ = số chẵn )suy ra p+1 chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra p + 1 chia hết cho 6 ( một số chia hết hết cho 2 và 3 , chia hết cho 6 )
Ta có: p và p + 2 là số nguyên tố lớn hơn 3 nên p + p + 2 = 2p + 2 chia hết cho 2
p là số nguyên tố lớn hơn 2 nên:
- p = 3k ( loại vì 3k là hợp số có ước là 3 và k )
- p = 3k + 1 ( loại vì số nguyên tố lớn hơn 3 là số lẻ => 3k + 1 là số chẵn )
- p = 3k + 2 ( chọn )
=> 2p + 2 = 6k + 4 + 2 = 6k + 6 chia hết cho 3
2p + 2 chia hết cho 2 và 3 => 2p + 2 chia hết cho 6
=>\(\frac{\left(2p+2\right).1}{2}\) = p + 1 chia hết cho 6
(p+1) chia hết cho 6 => (p+1) chia hết cho cả 2 và 3 (vì 2 và 3 nguyên tố cùng nhau)
p là số nguyên tố => p là số lẻ => p+1 là số chẵn nên chia hết cho 2
p;p+1;p+2 là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà p và p+2 là 2 số nguyên tố nên ko chia đc cho 3 => p+1 chia hết cho 3
p co 2 uoc duy nhat la 1 va chinh no nen p la so nguyen to. Mat khac bang viec su dung bang cac so nguyen to duoi 1000, ta cung tra duoc p la so nguyen to