K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

\(=n\left(n+1\right)\left(2n+5\right)-n\left(n+1\right)\left(n+3\right)=n\left(n+1\right)\left(2n+5-n-3\right)=n\left(n+1\right)\left(n+2\right)\)

đây là tích của 3 số tự nhiên liên tiếp

trong đó: có 1 số chia hết cho 2

có một số chia hết cho 3

vì 2,3 ngtố cùng nhau 

=> tích này sẽ chia hết cho 2.3=6

=> chia hết cho 6

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

a: \(=n^2+5n-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: \(=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

c: \(=6n^2+30n+n+5-6n^2-3n-10n-5\)

\(=18n⋮2\)

23 tháng 9 2017

\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)

25 tháng 9 2017

Sao có câu a) không vậy bạn?

a: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

b: \(B=\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(=2n\left(2n-1\right)\left(2n-2\right)\)

\(=4n\left(n-1\right)\left(2n-1\right)\)

Vì n;n-1 là 2 số liên tiếp

nên \(n\left(n-1\right)⋮2\)

\(\Leftrightarrow4n\left(n-1\right)⋮8\)

hay B chia hết cho 8

24 tháng 7 2021

a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5) 

= n2 - 1 - (n2 - 12n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)

b) Ta có n(2n - 3) - 2n(n + 2) 

= 2n2 - 3n - 2n2 - 2n 

= - 5n \(⋮5\forall n\inℤ\)

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)