Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC
c: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)
hay CI\(\perp\)CA
tu ve hinh :
xet tamgiac AMB va tamgiac AMC co : goc BAM = goc CAM do AM la phan giac cua goc BAC (gt)
AB = AC va goc ABC = goc ACB do tamgiac ABC can tai A (gt)
=> tamgiac AMB = tamgiac AMC (c - g - c) (1)
b, (1) => goc AMB = goc AMC
goc AMB + goc AMC = 180 (ke bu)
=> goc AMB = 90
=> AM | BC (dn)
Xét tam giác ACH ta có:
\(AH^2+HC^2=AC^2\)(1)
Xét tam giác ABH ta có:
\(BH^2+AH^2=AB^2\)(2)
Từ (1) và (2) ta có:
\(AB^2-AC^2=\left(AH^2+BH^2\right)-\left(AH^2+HC^2\right)\)
\(\Rightarrow AB^2-AC^2=AH^2+BH^2-AH^2+HC^2\)
\(\Rightarrow AB^2-AC^2=BH^2-HC^2\)
Bạn tự vẽ hình nha
a) Xét tam giác BAD vuong tai A
Suy ra ABD+ADB=90
Xét tam giác BDH vuông tại H
suy ra DBH+BDH=90
Suy ra ABD+ADB=DBH+BDH
Mà ABD=DBH Suy ra ADB=BDH
Xét tam giac abd và tam giac bdh có
ABD=DBH(gt)
BD là canh chung
adb=bdh(cmt)
Suy ra tam giac ABD=tam giac DBH(g.c.g)
Suy ra AD=DH vì 2 cạnh tương ứng