\(n⋮9\)thì \(3^{2n}+3^n+1⋮13\)

Giải được...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 9 2017

Lời giải:

1)

Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)

\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)

\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)

Do đó \(A\vdots 405\) (đpcm)

2)

Ta thấy : \(12^{2}\equiv 11\pmod {133}\)

\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)

\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)

\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)

Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)

3)

Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)

Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)

Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)

Do đó ta có đpcm.

28 tháng 9 2018

câu 1 số 5 là sao vậy bạn và đpcm là gì vậy

1 tháng 11 2018

a) n^2.(n+1)+2n.(n+1)

= (n+1).(n^2+2n)

= n.(n+1).(n+2) chia hết cho 6 ( do 3 số liên tiếp chia hết cho 6)

b) (2n-1)^3 - (2n-1)

= (2n-1).[(2n-1)^2 - 1]

= (2n-1).(2n-1-1).(2n-1+1)

= (2n-1).2.(n-1).2n

= 4.n.(n-1).(2n-1)

mà n.(n-1) là 2 số tự nhiên liên tiếp

=> n hoặc n - 1 sẽ chia hết cho 2

=> 4.n.(n-1) sẽ chia hết cho 4.2 = 8

=> 4.n.(n-1).(2n-1) chia hết cho 8

=> (2n-1)^3 - (2n-1) chia hết cho 8

1 tháng 8 2021

Ta có (n2 + 3n - 1)(n + 2) - n3 + 2 

= n3 + 3n2 - n + 2n2 + 6n - 2 - n3 + 2

= 5n2 + 5n = 5n(n + 1) \(⋮5\)

20 tháng 6 2017

b chia 3 dư bao nhiêu vậy bn ?

20 tháng 6 2017

dư 2 nha bạn

25 tháng 10 2017

Chứng minh n^6+n^4-2n^2 chia hết cho 72?

5 tháng 7 2016

xem lại câu a nhé bạn