Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
n\(^3\) + 11n
= n\(^3\) - n + 12n
= n ( n\(^2\) - 1 ) + 12n
= n ( n - 1 )( n + 1 ) + 12n
= ( n - 1 )n( n + 1 ) + 12n
Vì ( n - 1 )n( n + 1 ) là 3 số nguyên liên tiếp.
⇒ ( n - 1 )n( n + 3 ) có tích của 3 số nguyên liên tiếp nên phải chia hết cho 6.
Lại có : 12 sẽ chia hết cho 6
⇒ 12n chia hết cho 6
Vậy ( n - 1 )n( n + 1 ) + 12n sẽ chia hết cho 6
Vậy n\(^3\) + 11n chia hết cho 6
Mình ghi nhầm. Bạn thay số 3 đó sang 1 là ok. Bài làm không sai đâu, ghi nhầm thôi. Tick cho mình có động lức cái :))
Giả sử \(n^2+11n+39⋮49\) \(\Rightarrow4n^2+44n+156⋮49\)
\(\Rightarrow4n^2+44n+156⋮7\) \(\Leftrightarrow4n^2+2.2n.11+121+35⋮7\)
\(\Leftrightarrow\left(2n+11\right)^2+35⋮7\) mà \(35⋮7\) nên \(\left(2n+11\right)^2⋮7\) mà 7 là số nguyên tố
\(\Rightarrow\left(2n+11\right)^2⋮49\) \(\Rightarrow4n^2+4n+121⋮49\) mà
\(4n^2+4n+121+35⋮49\) nên \(35⋮49\) => vô lý vậy điều giả sử là sai
vậy n^2+11n+39 không chia hết cho 49
Ta có:
n⁴ + 6n³ + 11n² + 6n
= n⁴ + 2n³ + 4n³ + 8n² + 3n² + 6n
= (n⁴+2n³) + (4n³ + 8n²)+(3n² + 6n)
= n³(n+2) + 4n²(n+2) + 3n(n+2)
= (n+2)(n³+4n²+3n)
= (n+2)n(n²+3n)
= n(n+1)(n+2)(n+3)
Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n⁴+2n³+4n³+8n²+3n²+6n chia hết cho 24.
Chúc bạn học tốt😊😊. kk mình nha😅😅