\(n^3+1\)không phải số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
19 tháng 12 2020

đề sai không nhỉ, khi n=2 thì \(n^3+1=9\) là số chính phương mất rồi nhỉ

19 tháng 12 2020

giả sử 

n^3 +1 = a^2 , a là số tự nhiên

=>n>a>0

=>n lớn hơn hoặc bằng a+1

=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1

=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không

=> a=0

=> n= -1 vô lí

=> đpcm

:)

10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

16 tháng 10 2017

Ta có : \(n^6-n^4+2n^3+2n^2\)

\(=\left(n^6+2n^3+1\right)-\left(n^4-2n^2+1\right)\)

\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2\)

\(=\left(n^3+1-n^2+1\right)\left(n^3+1+n^2-1\right)\)

\(=n^2\left(n^3-n^2+2\right)\left(n+1\right)\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Ta thấy \(n^2\left(n+1\right)^2\) là số chính phương (1) \(n^2-2n+2=\left(n-1\right)^2+1\)ko phải là số chính phương (2)

Từ (1);(2) => \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) ko phải là số chính phương (đpcm)

26 tháng 12 2019

Bạn vào liink này nha:https://olm.vn/hoi-dap/detail/11367472277.html

20 tháng 4 2020

\(A=x^6-x^4+2x^3+2x^2\)

\(=x^2\left(x^4-x^2+2x+2\right)\)

\(=x^2\left(x^4+2x^3+x^2-2x^3-4x^2-2x+2x^2+4x+2\right)\)

\(=x^2\left[x^2\left(x^2+2x+1\right)-2x\left(x^2+2x+1\right)+2\left(x^2+2x+1\right)\right]\)

\(=x^2\left(x^2-2x+2\right)\left(x+1\right)^2\)

\(=x^2\left(x+1\right)^2\left[\left(x-1\right)^2+1\right]\)

Với \(x>1\)thì \(\left(x-1\right)^2+1\)không là số chính phương

Vậy A không là số chính phương

8 tháng 1 2017

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

26 tháng 10 2016

bon so lien tiep chia het cho 8

A=8k+3 

so chinh phuong le chi co dang 8k+1

A ko cp

22 tháng 2 2018

Ta có n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z )

Ta thấy: n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z ) chia cho 5 dư 2

 vì không có số chính phương nào chia 5 dư 2 

 Vậy  n5 +1999n +2017 ( n E Z ) không phải là số chính phương
 

2 tháng 8 2016

Giả sử 2n - 1 là số chính phương => 2n - 1 có dạng 4k hoặc 4k + 1

   +) Nếu 2n - 1 có dạng 4k => 2n có dạng 4k + 3. Vì 2n chia hết cho 2 mà 4k + 3 không chia hết cho 2 => mâu thuẫn => loại

   +) Nếu 2n - 1 có dạng 4k + 1 => 2n có dạng 4k + 2. Vì n là số tự nhiên lớn hơn 1 => 2n luôn chia hết cho 4 mà 4k + 2 không chia hết cho 4 => mâu thuẫn => loại

Vậy 2n - 1 không phải số chính phương

2 tháng 8 2016

Do n là số tự nhiên > 1 => 2n luôn chia hết cho 4

=> 2n - 1 chia 4 dư 3, không là số chính phương

Mk chưa hs chứng minh = phản chứng, đây là cách lp 6, hơi ngắn

25 tháng 8 2016

Giả sử \(\sqrt{a}\)là 1 số hữu tỉ thì \(\sqrt{a}=\frac{m}{n}\)( với m , n = 1 )

Khi đó \(a^2=\frac{m^2}{n^2}\)

Vì a là số tự nhiên nên mchia hết cho n2

hay m chia hết cho n ( ngược với đk m,n = 1 )

=> ĐPCM

6 tháng 3 2020

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl