Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy 24 = 3.8
Mặt khác ƯCLN(3,8)=1 nên ta cần chứng minh tích trên chia hết cho 3 và 8
*Chứng minh chia hết cho 3
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp
Do đó \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3 (1)
*Chứng minh chia hết cho 8
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp nên sẽ có 2 số chẵn và 2 số lẻ
Ta thấy tích 2 số chẵn liên tiếp luôn chia hết cho 8 nên \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 8 (2)
Từ (1) và (2) suy ra \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 24
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
Vì \(n⋮n\) với mọi n nguyên nên \(n\left(5n+3\right)⋮n\)
Hay A chia hết cho n với mọi n thuộc Z.
Vì n \(\in\) Z => 5n+3 \(\in\) Z. Mà n \(⋮\) n
=> n( 5n+3 ) \(⋮\) n với mọi n \(\in\) Z
Vậy A \(⋮\) n với mọi n \(\in\) Z
A=n.(5n+3) chia hết cho 2
Nếu n là chẵn thì n = 2k
Thay vào ta có:
A = 2k(5.2k + 3) = 2k.(10k + 3)
= 20.k2 + 6.k
= 2.(10k2 + 3k) chia hết cho 2