Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Ta có:
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Do \(n\left(n-1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vì n là số nguyên nên n có các dạng \(5k;5k+1;5k+2;5k+3;5k+4\)
Với \(n=5k\Rightarrow n^5-n=5k\left(25k^2-1\right)\left(25k^2+1\right)⋮5\)
Với \(n=5k+1\) thì \(n-1=5k+1-1=5k\Rightarrow n^5-n⋮5\)
Với \(n=5k+2\) thì \(n^2+1=\left(5k+2\right)^2+1=25k^2+20k+5⋮5\Rightarrow n^5-n⋮5\)
Với \(n=5k+3\) thì \(n^2+1=\left(5k+3\right)^2+1=25k^2+30k+10⋮5\Rightarrow n^5-n⋮5\)
Với \(n=5k+4\) thì \(n+1=5k+5⋮5\Rightarrow n^5-n⋮5\)
Mà \(\left(2;5\right)=1\Rightarrowđpcm\)
Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right).\)
Vì (n-1), n là 2 số nguyên liên tiếp nên \(n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)hay \(n^5-n⋮2\)(1)
Mặt khác \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Nhận thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(tích của 5 số nguyên liên tiếp); \(5n\left(n-1\right)\left(n+1\right)⋮5\)
Suy ra: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)hay \(n^5-n⋮5\)(2)
Từ (1) và (2) kết hợp với \(\left(2;5\right)=1\)Suy ra \(n^5-n⋮10\)
Cách này thực chất cũng gần giống bài của Cool Kid, nhưng lập luận để chia hết cho 5 thì hơi khác
P/S : Đây là ACC phụ nên đừng ti ck cho câu trả lời này :))
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
\(A=n^3-n\\ =n\left(n^2-1\right)\\ =n\left(n-1\right)\left(n+1\right)\)
n; n-1; n+1 là 3 số tự nhiên liên tiếp (1)
=> 1 trong 3 số trên chia hết cho 2
=> A chia hết cho 2 (2)
Từ (1) => một trong 3 số trên chia hết cho 3
=> A chia hết cho 3 (3)
2 và 3 là 2 số nguyên tố cùng nhau (4)
Từ (2); (3); (4) => A chia hết cho 6 (đpcm)
n3 - n
= n(n2 - 1) = n(n2 - 12)
= n(n - 1)(n + 1)
Có n - 1 ; n ; n + 1 là 3 số nguyên liên tiếp (n thuộc Z)
=> trong 3 số đó luôn có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3
=> Tích của chúng chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6
=> n3 - n chia hết cho 6 (Đpcm)
Lời giải:
$A=p^4+2019q^4=p^4-q^4+2020q^4$
$=(p^2-q^2)(p^2+q^2)+2020q^4$
Vì $p,q$ là số nguyên tố lớn hơn 5 nên $(p,5)=(q,5)=1$
$\Rightarrow p^2,q^2\equiv 1,4\pmod 5$
Nếu $p^2\equiv q^2\pmod 5$ thì $p^2-q^2\equiv 0\pmod 5$
$\Rightarrow A=(p^2-q^2)+2020q^4\equiv 0 \pmod 5(1)$
Nếu $p^2,q^2$ không cùng số dư khi chia cho $5$ thì:
$p^2+q^2\equiv 1+4\equiv 0\pmod 5$
$\Rightarrow A\equiv 0\pmod 5(2)$
Từ $(1);(2)\Rightarrow A\vdots 5(*)$
Mặt khác:
Vì $p,q>5$ nên $p,q$ lẻ
$\Rightarrow p^2\equiv q^2\equiv 1\pmod 4$
$\Rightarrow p^2-q^2\equiv 0\pmod 4$
$\Rightarrow A=(p^2-q^2)(p^2+q^2)+2020q^4\equiv 0\pmod 4$
$\Rightarrow A\vdots 4(**)$
Từ $(*); (**)\Rightarrow A\vdots (4.5=20)$
- Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12
Vậy đẳng thức đúng với n = 1.
- Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:
\(k^4-k^2\) chia hết cho 12
- Ta cần chứng minh mệnh đề đúng với n = k + 1.
Ta có:
(k + 1)4 - (k + 1)2
\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)
\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12
Vậy đẳng thức đúng với n = k + 1.
Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.
P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Bài 8:
a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)
\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)
b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)
\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)
c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)
d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12\cdot2n=24n⋮24\)(đpcm)