Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
Ta có \(n^2+6n+20⋮11\Rightarrow\left(n^2+2\cdot3\cdot n+3^2\right)+11⋮11\Rightarrow\left(n+3\right)^2+11⋮11\)
\(\Rightarrow\left(n+3\right)^2⋮11\). Mặt khác \(11\)chính là số nguyên tố . Do đó \(\left(n+3\right)^2\)cũng chia hết cho \(11^2\)
Tức là \(\left(n+3\right)^2⋮121\Rightarrow n^2+6n+9⋮121\)Mà \(11\)khong chia hết cho \(121\)Nên \(n^2+6n+9+11⋮̸121\Rightarrow n^2+6n+20⋮̸121\)
. \(\left(n+3\right)^2⋮11\Rightarrow\left(n+3\right)^2⋮121\).Đó là theo một công thức nhé bạn cho a^2 chia hết cho b mà b là số nguyên tố nên a^2 chia hết cho b^2. Cách chứng minh ở trên mạng bạn lên đấy kiếm nhé
TA THẤY: \(n^2+6n+20=\left(n^2+6n+9\right)+11=\left(n+3\right)^2+11\)
nên \(n^2+6n+20\)không là số chính phương
Mà \(\left(n^2+6n+20\right)⋮11\)
\(\Rightarrow\left(n^2+6n+20\right)\)không chia hết cho \(11^2\)
Vậy \(n^2+6n+20\)không chia hết cho 121 (ĐPCM)
Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))
\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)
Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.
Do đó : 4k(k+1) chia hết cho 2.4=8
Bài giải
Ta có : Nếu \(n\text{ }⋮\text{ }5\)
\(\Rightarrow\text{ }n^2=n\cdot n\text{ là bội của }n\text{ }\Rightarrow\text{ }n^2\text{ }⋮\text{ }5\)
giả sử n^2+4n+2 chia hết cho 4 mà n không chia hết cho 4
=> n chia cho 4 dư a (0<a<4)
=>n=4k+a
=> n^2+4n+2= 16k^2 +8ka +a^2 +16k+4a +2
=>a^2+2 chia hết cho 4, mà 0<a<4 (vô lý do k số nào thỏa mãn)
=> giả thiết sai
vậy nếu n^2 +4n+2 chia hết cho 4 thì n chia hết cho 4
Với $n$ kiểu gì thì $n^2+4n+2$ cũng không chia hết cho $4$ nha bạn
a) Đặt Sn = n3 + 3n2 + 5n
Với n = 1 thì S1 = 9 chia hết cho 3
Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3
Ta phải chứng minh rằng Sk+1 3
Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= k3 + 3k2 + 5k + 3k2 + 9k + 9
hay Sk+1 = Sk + 3(k2 + 3k + 3)
Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.
Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .
b) Đặt Sn = 4n + 15n - 1
Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9
Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.
Ta phải chứng minh Sk+1 9.
Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1
= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)
Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9
Vậy (4n + 15n - 1) 9 với mọi n ε N*
\(n^2⋮5\)
nên \(n^2=\left(5k\right)^2\)
=>n=5k
=>n chia hết cho 5