Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, n + 2 thuộc Ư(3)
=>n + 2 thuộc {-1; 1; -3; 3}
=> n thuộc {-3; -1; -5; 1}
Vậy...
2, n - 6 chia hết cho n - 1
=> n - 1 - 5 chia hết cho n - 1
=> 5 chia hết cho n - 1 (Vì n - 1 chia hết cho n - 1)
=> n - 1 thuộc Ư(5)
=> n - 2 thuộc {1; -1; 5; -5}
=> n thuộc {3; 1; 7; -3}
Vậy...
câu 1:
Ư(3)={-3;-1;1;3}
=> x+2 thuộc {-3;-1;1;3}
nếu x+2=-3 thì x=-5
nếu x+2=-1 thì x=-3
nếu x+2=1 thì x=-1
nếu x+2=3 thì x=1
=> x thuộc {-5;-3;-1;1}
câu 2 mk chịu
8 - 3n = 11 - (3n + 3 ) = 11 - 3(n+1)
Mà 3(n+1) chia hết n+1
=> 11 chia hết n+1
Với n+1 = -11 => n = -12
Với n+1 = -1 => n = -2
Với n+1 = 1 => n = 0
Với n+1 = 11 => n = 10
Vậy n thuộc {-12 ; -2 ; 0 ; 10}
Đặt A=2+22+...+2100
A=(2+22)+...+(299+2100)
A=2.(1+2)+...+299.(1+2)
A=2.3+...+299.3
A=3.(2+...+299)
=> A chia hết cho 3
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Gọi số cần tìm là a
ta có a +1 chia hết cho 2;3;4;5;6
=> a+1 thuộc BC(2;3;4;5;6) ; BCNN(2;3;4;5;6) =60
=> a =60k -1 với k thuộc N*
a thuộc {59;119;179,,,,,}
a nhỏ nhất chia hết cho 7 => a =119
B1 :2n + 5 ⋮ n + 2
<=> 2n + 4 + 1 ⋮ n + 2
<=> 2(n + 2) + 1 ⋮ n + 2
=> 1 ⋮ n + 2 => n + 2 ∈ Ư(1) = { - 1; 1 }
Với n + 2 = - 1 => n = - 1 - 2 = - 3
Với n + 2 = 1 => n = 1 - 2 = - 1
Vậy n = { - 3; - 1 }
B2 : A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )
= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 257 ( 1 + 2 + 22 + 23 )
= 2.( 1 + 2 + 4 + 8 ) + 25( 1 + 2 + 4 + 8 ) + ... + 257 ( 1 + 2 + 4 + 8 )
= 2.15 + 25 .15 + ... + 257 . 15
= 15(2 + 25 + .... + 257 ) chia hết cho 15
Mà 15chia hết cho 3 => A chia hết cho 15 và 3 ( đpcm )
CM chia hết cho 7 tương tự nhá
xong r còn j nữa
tổng của 3 số liên tiếp chia hết cho 6