Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Ta có: \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Do: \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{2}{11}>\frac{2}{12}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{2}{12}.6=1\) \(\left(1\right)\)
Lại có: \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{2}{6}.6=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow1< E< 2\)
\(\Rightarrow E\notin Z\)\(\left(đpcm\right)\)
Chúc bạn học tốt !!!
Ta có : D = \(2\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{25}+.....+\frac{1}{n\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{n\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow D=1-\frac{1}{n+1}=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
Vậy D không phải là số nguyên (đpcm)
\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n\left(n+2\right)}\right)\)
\(D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n\left(n+2\right)}\)
\(D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\)
\(D=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{\left(n+2\right)-n}{n\left(n+2\right)}\)
\(D=\frac{3}{1.3}-\frac{1}{1.3}+\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{\left(n+2\right)}{n\left(n+2\right)}-\frac{n}{n\left(n+2\right)}\)
\(D=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(D=\frac{1}{1}-\frac{1}{n+2}\)
\(D=\frac{n+2}{n+2}-\frac{1}{n+2}\)
\(D=\frac{n+2-1}{n+2}\)
\(D=\frac{n+1}{n+2}\Rightarrow D\notin Z\left(dpcm\right)\)
Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24
Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ
Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)
Đề bài này kì quặc thật... đáng lẽ mẫu phải được bình phương lên mới t/m A ko phải số tự nhiên
Mong bạn xem lại đề bài
\(\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}\)
\(\frac{3}{4}A+A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}+1-\frac{3}{4}+\left(\frac{3}{4}\right)^2...\)( Bn tự ghi lại A do máy mình ko đủ độ rộng )
\(\frac{7}{4}A=\left(\frac{3}{4}\right)^{2019}+1\)
\(A=\text{ }\left[\left(\frac{3}{4}\right)^{2019}+1\right]:\frac{7}{4}\)
\(A=\text{ }\frac{\left[\left(\frac{3}{4}\right)^{2019}+1\right].4}{7}\)
=> A là phân số
=> A ko phải số nguyên
Ta có: \(\frac{1}{10}>\frac{1}{11};\frac{1}{10}>\frac{1}{12};....;\frac{1}{10}>\frac{1}{19}\)
=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< \frac{1}{10}.9\)
\(=\frac{9}{10}< 1\)
Mà \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>0\)
=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}\) không là số tự nhiên (đpcm)