Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n^4-1\right)=n^5-n\)
Vì \(n^5=n^{4+1}\) luôn có số tận cùng giống n
\(\Rightarrow n^5-n=\overline{.....0}⋮5\)
Hay \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮5\) (đpcm)
Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)
Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)
A=5^n^2+5^n-18n^2-6^n*2
= (5^n^2-18^n^2)+(5^n-12^n)
= -13^n^2-7^n
Mà -13^n^2-7^n chia hết cho 91 ( do chia hết cho 13 và 7)
=> A chia hết cho 91 ( đpcm)
k đúng cho mình nhé
Phải sửa đề là chia hết cho 8 nha,mk có thử lại rồi: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n\left(n+4\right)-1\left(n+4\right)-n\left(n+1\right)+4\left(n+1\right)\)
\(=n^2+4n-n+4-n^2+n+4n+4\)
\(=\left(n^2-n^2\right)+\left(4n+4n\right)+\left(n-n\right)+\left(4+4\right)\)
\(=0+8n+0+8\)
\(=8n+8\)
\(=8\left(n+8\right)⋮8\rightarrowđpcm\)
thế này mới đúng nè đầu bài đúng đó không sai đâu
(n-1)(n+4)-(n-4)(n+1)
=n(n+4)+(-1)(n+4)-((n(n+1)+(-4)(n+1)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
=\(=n^2+4n-n-4-n^2-n+4n+4\)
=\(=\left(n^2-n^2\right)+\left(4n+4n-n-n\right)+\left(-4+4\right)\)=6n chia hết cho 6 với mọi n thuộc Z