K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: \(S_1=\left\{3;-1\right\}\)(1)

Ta có: \(\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy: \(S_2=\left\{-3;-1\right\}\)(2)

Từ (1) và (2) suy ra \(S_1\ne S_2\)

hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau

4 tháng 2 2017

Kiểm tra được giá trị x = -4 là nghiệm của 3x – 9 < 0 nhưng không là nghiệm của  x 2  < 9.

Vậy hai bất phương trình 3x – 9 < 0 và  x 2  < 9 không tương đương.

1 tháng 6 2017

a) Đ

b) S

c) S

d) Đ

29 tháng 8 2019

Giải bất phương trình 2x + 1 > 3 ta tìm được tập nghiệm là x > 1

Ta kiểm tra được x = -2 là nghiệm của bất phương trình |x| > 1 nhưng không là nghiệm của 2x + 1 > 3 (không thuộc tập nghiệm x > 1)

Vậy hai bất phương trình 2x + 1 > 3 và |x| > 1 không tương đương.

26 tháng 3 2019

a)\(2x+1>3\)

\(\Leftrightarrow2x>2\)

\(\Leftrightarrow x>1\)

\(\left|x\right|>1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

=> Hai bất phương trình sau không tương đương

b. 3x – 9 < 0

\(\Leftrightarrow3x< 9\)

\(\Leftrightarrow x< 3\)

x2 < 9

\(\Leftrightarrow\left|x\right|< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 3\end{matrix}\right.\)

=> Hai bất phương trình sau không tương đương

2 tháng 4 2019

a)2x+1>32x+1>3

⇔2x>2⇔2x>2

⇔x>1⇔x>1

|x|>1|x|>1

⇔{x>1x<−1⇔{x>1x<−1

=> Hai bất phương trình sau không tương đương

b. 3x – 9 < 0

⇔3x<9⇔3x<9

⇔x<3⇔x<3

x2 < 9

⇔|x|<3⇔|x|<3

⇔{x>−3x<3⇔{x>−3x<3

=> Hai bất phương trình sau không tương đương

1:

a: x^3+x^2-3x-3=0

=>x^2(x+1)-3(x+1)=0

=>(x+1)(x^2-3)=0

=>x=-1 hoặc x^2-3=0

=>\(S_1=\left\{-1;\sqrt{3};-\sqrt{3}\right\}\)

2x+3=1

=>2x=-2

=>x=-1

=>S2={-1}

=>Hai phương trình này không tương đương.

1: \(\dfrac{1}{\left|x+1\right|}+\dfrac{1}{x+2}=3\left(1\right)\)

TH1: x>-1

Pt sẽ là \(\dfrac{1}{x+1}+\dfrac{1}{x+2}=3\)

=>\(\dfrac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)

=>3(x+1)(x+2)=2x+3

=>3x^2+9x+6-2x-3=0

=>3x^2+7x+3=0

=>\(\left[{}\begin{matrix}x=\dfrac{-7-\sqrt{13}}{6}\left(loại\right)\\x=\dfrac{-7+\sqrt{13}}{6}\left(nhận\right)\end{matrix}\right.\)

TH2: x<-1

Pt sẽ là:

\(\dfrac{-1}{x+1}+\dfrac{1}{x+2}=3\)

=>\(\dfrac{-x-2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)

=>\(\dfrac{-1}{\left(x+1\right)\left(x+2\right)}=3\)

=>-1=3(x+1)(x+2)

=>3(x^2+3x+2)=-1

=>3x^2+9x+6+1=0

=>3x^2+9x+7=0

Δ=9^2-4*3*7

=81-84=-3<0

=>Phương trình vô nghiệm

Vậy: \(S_3=\left\{\dfrac{-7+\sqrt{13}}{6}\right\}\)

x^2+x=0

=>x(x+1)=0

=>x=0 hoặc x=-1

=>S4={0;-1}

=>S4<>S3

=>Hai phương trình này không tương đương

15 tháng 8 2017

28 tháng 12 2017

a) b) HS tự làm.

c) Hai phương trình đã cho không tương đương.