K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2015

đặt A=x/x+y+z    +y/y+z+t   +z/z+t+x   +t/t+x+y

ta có      x/x+y+z>x/x+y+z+t

y/y+z+t>y/x+y+z+t

z/z+t+x>z/z+t+x+y

t/t+x+y>t/x+t+y+z

=>A>x/x+y+t+z  +t/x+y+t+z  +z/x+y+t+z  +y/x+t+y+z=x+y+z+t/x+y+z+t=1>3/4  (1)

*)y/y+z+t<y+x/y+z+t+x

x/x+y+z<x+t/x+y+z+t

z/z+t+x<z+y/x+y+z+t

t/t+x+y<t+z/t+x+y+z

=>A<y+x/x+y+z+t  +x+t/x+y+z+t  +z+y/x+y+z+t  +t+z/x+y+z+t

            =y+x+x+t+z+y+t+z/x+y+z+t=2(x+y+z+t)/x+y+z+t=2<5/2   (2)

từ (1) và (2) =>3/4<A<5/2

=>

26 tháng 5 2015

Ta có:

\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}

13 tháng 10 2018

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)

\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Chứng minh tương tự:

\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)

Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra

5 tháng 7 2020

Áp dụng bđt cauchy schwarz dạng engel , ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}+\frac{1^2}{t}\ge\frac{16}{x+y+z+t}\)

\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{16}{x+y+z+t}+1\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=t\)

Vậy ta có điều phải chứng minh 

5 tháng 7 2020

cách khác :3

Áp dụng bđt phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(< =>\frac{a+b}{ab}.\left(a+b\right).ab\ge\frac{4}{a+b}.\left(a+b\right).ab\)

\(< =>\left(a+b\right)^2\ge4ab\)

\(< =>a^2+2ab+b^2\ge4ab\)

\(< =>\left(a-b\right)^2\ge\)(luôn đúng)

Nên ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{4}{x+y}+\frac{4}{z+t}+1\ge\frac{16}{x+y+z+t}+1\)

từ đó =>3x=y+z+t

=>4x=x+y+z+t

tương tự=>4y=x+y+z+t

4z=x+y+z+t

4t=x+y+z+t

=>x=y=z=t=>F=4

mà bài này lớp 7 chứ,có phải lớp 9 đâu

sử dụng dãy tỉ số bằng nhau

7 tháng 2 2017

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm:

\(\Rightarrow\left\{\begin{matrix}3yzt\le y^3+z^3+t^3\\3xtz\le x^3+t^3+z^3\\3xyt\le x^3+y^3+t^3\\3xyz\le x^3+y^3+z^3\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x^3+3yzt\le x^3+y^3+z^3+t^3\\y^3+3xtz\le x^3+y^3+z^3+t^3\\z^3+3xyt\le x^3+y^3+z^3+t^3\\t^3+3xyz\le x^3+y^3+z^3+t^3\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{x^3}{x^3+3yzt}\ge\frac{x^3}{x^3+y^3+z^3+t^3}\\\frac{y^3}{y^3+3xtz}\ge\frac{y^3}{x^3+y^3+z^3+t^3}\\\frac{z^3}{z^3+3xyt}\ge\frac{z^3}{x^3+y^3+z^3+t^3}\\\frac{t^3}{t^3+3xyz}\ge\frac{t^3}{x^3+y^3+z^3+t^3}\end{matrix}\right.\)

\(\Rightarrow\frac{x^3}{x^3+3yzt}+\frac{y^3}{y^3+3xtz}+\frac{z^3}{z^3+3xyt}+\frac{t^3}{t^3+3xyz}\ge\frac{x^3+y^3+z^3+t^3}{x^3+y^3+z^3+t^3}\)

\(\Rightarrow\frac{x^3}{x^3+3yzt}+\frac{y^3}{y^3+3xtz}+\frac{z^3}{z^3+3xyt}+\frac{t^3}{t^3+3xyz}\ge1\) ( đpcm )

8 tháng 2 2017

Câu trả lời cần bổ sung : dấu bằng xảy ra khi và chỉ khi x = y = z = t > 0