Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a< b< c< d< m< n\)
\(\Rightarrow\hept{\begin{cases}a+c+m< 3a\\a+b+c+d+m+n< 6a\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{3a}{6a}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
Bài giải
Ta có : \(a< b\text{ }\Rightarrow\text{ }2a< a+b\)
\(c< d\text{ }\Rightarrow\text{ }2c< c+d\)
\(m< n\text{ }\Rightarrow\text{ }2m< m+n\)
\(\Rightarrow\text{ }2a+2c+2m< \left(a+b+c+d+m+n\right)\) \(\Leftrightarrow\text{ }2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)
\(\Rightarrow\text{ }\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Từ:\(\hept{\begin{cases}a< c\\c< d\\m< n\end{cases}}\Rightarrow a+c+m< c+d+n\)
\(\Rightarrow2\left(a+c+n\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Ta có: \(\frac{6a+1}{3a-1}=2+\frac{3}{3a-1}\)
Để (6a+1) ⋮ (3a -1) thì: 3a-1 thuộc Ư(3) ={1; -1; 3; -3}
-Với 3a-1=1 => a=\(\frac{2}{3}\) (Loại)
- Với 3a- 1= -1 => a= 0 (Chọn)
- Với 3a -1 = 3 => a= \(\frac{4}{3}\)(Loại)
- Với 3a- 1= -3=> a= \(\frac{-2}{3}\)( Loại)
Vậy số nguyên a cần tìm là 0
Bài 4:
a) ĐKXĐ: x≠1
Để phân số \(\frac{13}{x-1}\) nhận giá trị nguyên thì
\(13⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(13\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow x\in\left\{2;0;14;-12\right\}\)(tm)
Vậy: x∈{-12;0;2;14}
b) ĐKXĐ: x≠2
Để phân số \(\frac{x+3}{x-2}\) nhận giá trị nguyên thì
\(x+3⋮x-2\)
\(\Leftrightarrow x-2+5⋮x-2\)
Vì x-2⋮x-2
nên 5⋮x-2
⇔x-2∈Ư(5)
⇔x-2∈{1;-1;5;-5}
⇔x∈{3;1;7;-3}(tm)
Vậy: x∈{3;1;7;-3}
Bài 5:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)(đpcm)
Bài 6:
Ta có: \(\frac{x}{y}=\frac{2}{7}\)
⇔y∈B(7)
⇔y∈{...;-7;0;7;14;21;28;...}
mà 5<y<29
nên y∈{7;14;21;28}
Do đó:
\(\left\{{}\begin{matrix}\frac{x}{7}=\frac{2}{7}\\\frac{x}{14}=\frac{2}{7}\\\frac{x}{21}=\frac{2}{7}\\\frac{x}{28}=\frac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2\cdot7}{7}\\x=\frac{2\cdot14}{7}\\x=\frac{2\cdot21}{7}\\x=\frac{2\cdot28}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=4\\x=6\\x=8\end{matrix}\right.\)
Vậy: Các phân số cần tìm là: \(\frac{2}{7};\frac{4}{14};\frac{6}{21};\frac{8}{28}\)
b, Ta có A+B=a+b-5-b-c+1
=a+(b-b)-5+1-c
=a-c-4(1)
Lại có C-D=b-c-4-(b-a)
=b-c-4-b+a
=(b-b)+a-c-4
=a-c-4(2)
Từ (1) và (2) ta có A+B=C-D
: a<b nên a+a < a+b
=> 2a < a+b (1)
c<d nên c+c < c+d
=> 2c < c+d (2)
m<n nên m+m < m+n
=> 2m < m+n (3)
Từ (1); (2) và (3). 2a + 2c +2m < a+b+c+d+m+n
=> 2(a+c+m) < a+b+c+d+m+n
vậy a+c+m/a+b+c+d+m+n <1/2
đúng ko ạ?