
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có :
\(\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\frac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(-\frac{\sqrt{a}+3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{a-2^2-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

CTV ma di hoi bai duyt m3 cat chuc luon thang ml Trần Quốc Đạt
CTV cuk cak ak di hoi bai clmm , CTV phai tra loi ko phai hoi nha thang sv rr
Ác quỷ quá đáng ghê ! Bạn đấy không biết thì phải hỏi chứ !
Nếu trên mạng ko có thì bạn đấy mới phải hỏi ở đây ! Nếu bạn gặp bài khó mà hỏi như vậy liệu người ta còn trả lời cho bạn nữa ko ?

B đâu ra chỉ? Không biết đề có sai không chứ mình rút gọn ra nhiêu đây thì ko đủ chứng minh C\(\ge0\) được

ta có: \(a^2+b^2=1\Rightarrow\hept{\begin{cases}a^2\le1\\b^2\le1\end{cases}\Rightarrow\hept{\begin{cases}0\le a\le1\\0\le b\le1\end{cases}\Rightarrow}\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\end{cases}}.}\)
\(\Rightarrow a^3+b^3\le a^2+b^2=1\)
\(\Rightarrow a^3+b^3\le1\) (*)
Mặt khác ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) (BĐT bu-nhi-a)
\(\Leftrightarrow\left(a+b\right)^2\le2\) ( vì a^2 +b^2 =1)
\(\Leftrightarrow a+b\le\sqrt{2}\) (1)
mà \(\left(a^2+b^2\right)^2\le\left(a+b\right)\left(a^3+b^3\right)\) (BĐT bu-nhi-a)
\(\Leftrightarrow1\le\left(a+b\right)\left(a^3+b^3\right)\) (2)
Thay (1) vào(2) ta đc: \(1\le\sqrt{2}\left(a^3+b^3\right)\)
\(\Leftrightarrow a^3+b^3\ge\frac{1}{\sqrt{2}}\) (**)
Từ (*);(**)=> đpcm

\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)
Biến đổi vế trái ta có:
\(=\left[\frac{1-\sqrt{a^3}}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1}{1+\sqrt{a}}\right]^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(\frac{1}{a+2\sqrt{a}+1}\right)\)
\(=\frac{\left(a+2\sqrt{a}+1\right)}{a+2\sqrt{a}+1}\)
\(=1=VP\)
Vậy đẳng thức được chứng minh

đây là đề bài lấy từ đề thi huyện năm 2015-2016 của trường minh nha
Thử với a = 1 thì:
\(\frac{1-2\sqrt{1}}{1}=-\frac{1}{1}=-1< 0\)
Ktra lại đề nhé
có lẽ nên thay "CHỨNG MINH" bằng " GIẢI BẤT PHƯƠNG TRÌNH"