Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}+\frac{\sqrt{n+1}}{n+1}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)
\(=1-\frac{\sqrt{100}}{100}=\frac{9}{10}< 1\)
\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}}=\frac{1}{\sqrt{2}-\sqrt{3}}.\frac{1}{\sqrt{3}+\sqrt{2}}=\frac{1}{-1}=-1\)
Đặt \(x=1+\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}+1}{2}\right)^2\) , \(y=1-\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}-1}{2}\right)^2\) \(\Rightarrow\begin{cases}x+y=2\\xy=\frac{1}{4}\end{cases}\)
Ta có vế trái : \(\frac{x}{1+\sqrt{x}}+\frac{y}{1-\sqrt{y}}=\frac{x-x\sqrt{y}+y+y\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}=\frac{\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)}\)
Xét tử số : \(\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)=2-\frac{1}{2}\left(\frac{\sqrt{3}+1}{2}-\frac{\sqrt{3}-1}{2}\right)=\frac{3}{2}\)
Xét mẫu số : \(\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)=\left(1+\frac{\sqrt{3}+1}{2}\right)\left(1-\frac{\sqrt{3}-1}{2}\right)=\left(1+\frac{1}{2}\right)^2-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{3}{2}\)
Vậy : \(\frac{x}{1+\sqrt{x}}+\frac{y}{1-\sqrt{y}}=\frac{\frac{3}{2}}{\frac{3}{2}}=1\) hay \(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=1\) (đpcm)