\(\frac{1}{n^3}\)<\(\frac{1}{\left(n-2\right)n\left(n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{n^3}< \frac{1}{\left(n-2\right)n\left(n+1\right)}\Leftrightarrow\frac{\left(n-2\right)n\left(n+1\right)}{n^3}< 1\Leftrightarrow\left(n-2\right)\left(n+1\right)< n^2\)

\(\Leftrightarrow n^2-n-2< n^2\Leftrightarrow-n-2< 0\)Đúng \(\forall n\inℕ\)

--->ĐPCM

18 tháng 11 2019

Ta có

\(A=\frac{1}{14}+\frac{1}{29}+...+\frac{1}{n^2+\left(n+1\right)^2+\left(n+2\right)^2}+...+\frac{1}{1877}\)

\(=\frac{1}{1^2+2^2+3^2}+\frac{1}{2^2+3^2+4^2}+...+\frac{1}{n^2+\left(n+1\right)^2+\left(n+2\right)^2}+...+\frac{1}{24^2+25^2+26^2}\)

\(B=n^2+\left(n+1\right)^2+\left(n+2\right)^2=3n^2+6n+5\left(1\right)\)

+ Với \(n\ge1\)từ (1) ta có \(B\le3n^2+9n+6=3\left(n^2+3n+2\right)=3\left(n+1\right)\left(n+2\right)\)Từ đó

\(A>\frac{1}{3}\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\right)=\frac{1}{3}C\)

Với \(C=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}=\frac{1}{2}-\frac{1}{26}=\frac{6}{13}\)

\(\Rightarrow A>\frac{1}{3}\cdot\frac{6}{13}=\frac{2}{13}>0,15\)

+ Với \(n\ge1\)từ (1) ta có \(B>2n^2+6n+4=2\left(n^2+3n+2\right)=2\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A< \frac{1}{2}\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\right)=\frac{1}{2}C\)

Với \(C=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}=\frac{1}{2}-\frac{1}{26}=\frac{6}{13}\)

\(\Rightarrow A< \frac{1}{2}\cdot\frac{6}{13}=\frac{3}{13}< 0,25\)

Vậy \(0,15< A< 0,25\)

5 tháng 9 2020

             Bài làm :

Ta có :

 \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}\)

\(=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3...\left(n+1\right)}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)

\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}\)

\(\text{Vì : }\frac{1}{1.2.3.4...\left(n+1\right)}>0\Rightarrow1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\)

=> Điều phải chứng minh

4 tháng 9 2020

Ta có : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3....\left(n+1\right)}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)

\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\left(\text{đpcm}\right)\)

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j