K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

\(Cm:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< 1\)

Có : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2008\cdot2009}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{1}{1}-\frac{1}{2009}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{2008}{2009}\left(1\right)\)

\(\frac{2008}{2009}< 1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{2008}{2009}< 1\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< 1\left(đpcm\right)\)

15 tháng 2 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2009^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2008.2009}\\ =\frac{1}{1}-\frac{1}{2009}< 1\left(\text{đ}pcm\right)\)

27 tháng 6 2019

Xét N :

N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)

Ta có :

\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)

...

\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)

\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)

Cộng vế theo vế của các bất đẳng thức trên , ta có :

\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)

=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)

=> N < 1 - \(\frac{1}{2010}\)<1

=> N < 1

18 tháng 6 2019

câu này hay thế!

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

15 tháng 2 2017

mình làm rùi kết bạn với mình đi mình bảo

8 tháng 7 2021

Giúp tui ik cần gấp

2 tháng 4 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2009^2}+\frac{1}{2010^2}>1\)

=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}+\frac{1}{2010^2}>\frac{ }{ }\)\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)

=\(\frac{1}{1}-\frac{1}{2010}=\frac{2010}{2010}-\frac{1}{2010}\)=\(\frac{2010}{2010}>\frac{1}{2010}=1>\frac{1}{2010}\)

Vậy \(1>\frac{1}{2010}\)

Bạn ơi sai đề nhé

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

29 tháng 7 2015

Ghi lộn đề thiếu thì phải. Hình như thiếu phân số 1/2011

8 tháng 7 2021

Ai giúp câu này ik

Không biết làm thì không giúp