Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.2+1/2.3+1/3.4+...+1/49.50
1-1/2+1/2-1/3+/13-1/4+1/4-1/5+1/5-...-1/49+1/49-1/50
1-1/50
50/50-1/50=49/50
E=1/1*2+1/2*3+1/3*4+...+1/49*50
E=1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
E=1-1/50
E=49/50
ta có
1/1*2+1/2*3+1/3*4+...+1/n*(n+1)=1/1-1/2+1/2-1/3+1/3-...-1/n+1= 33/34 (quy tắc)
1 - 1/n+1=33/34
1/n+1=1/34
nên n =33
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}<\)\(\frac{1}{2}\)
\(2A<\)\(\frac{1}{2}\)
\(\Rightarrow A<\)\(\frac{1}{4}\)
Vậy \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}<\)\(\frac{1}{4}\)
Ta có :\(A=10\left(\frac{1}{1.2}+\frac{5}{2.3}+...+\frac{89}{9.10}\right)\)
\(\Rightarrow10\left(\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\right)\)
\(\Rightarrow10\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\right]\)
\(\Rightarrow10\left[9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\right]\)
\(\Rightarrow10\left[9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\right]\)
\(\Rightarrow10\left[9-\left(1-\frac{1}{10}\right)\right]\)
\(\Rightarrow\)\(10\left[9-\frac{9}{10}\right]\)
\(\Rightarrow10.\frac{81}{10}\)
\(\Rightarrow A=81\)
Làm rờ đó sai thì thôi nha.
=> A= \(\frac{\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}\right).23.7.1009}{\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right).23.7.1009}\) + \(\frac{1}{30.1009-160}\)
=> A= \(\frac{7.1009+23.1009-23.7}{7.1009+23.1009-23.7+1}\) + \(\frac{1}{7.1009+23.1009-23.7+1}\) = \(\frac{7.1009+23.1009-23.7+1}{7.1009+23.1009-23.7+1}\) = 1.