Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )
\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )
\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)
b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)
\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)
\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )
c) MTC = ( x+ 2)2(x - 2)2
Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)
\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)
\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)
d) MTC = xyz( x - y)( y - z)( x - z)
Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
Cộng các phân thức lại ta có :
\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa
a)(x-1)(x+1)(x+2)
=(x2-1)(x+2)
=x3-x+2x2-2
b)\(\dfrac{1}{2}\)x2y(2x+y)(2x-y)
=\(\dfrac{1}{2}\)x2y(4x2-y2)
=2x4y-\(\dfrac{1}{2}\)x2y3
c)(x-\(\dfrac{1}{2}\))(x+\(\dfrac{1}{2}\))(4x-1)
=(x2-\(\dfrac{1}{4}\))(4x-1)
=4x3-x2-x+\(\dfrac{1}{4}\)
Ta có:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\)
Vì \(\dfrac{\left(a-b\right)^2}{2ab}\ge0\)
=> \(\dfrac{\left(a-b\right)^2}{2ab}+4\ge4\) (1)
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1+\dfrac{a}{b}+\dfrac{b}{a}+1=\dfrac{a}{b}+\dfrac{b}{a}+2\) (2)
Vì a,b>0 ,áp dụng bất đẳng thức Côsy
Ta có: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)
=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Kết hợp với (2) ta có: \(\dfrac{a}{b}+\dfrac{b}{a}+2\ge4\)
Và từ (1)
=> \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\left(đpcm\right)\)
Mình cũng không chắc nữa,bạn có thể xem lại
Chúc bạn học tốt
1.\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
=>\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(a/d t/c của dãy tỉ số bằng nhau)
=>\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt[]{\dfrac{1}{ab}}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\) (1)
Ta có \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a-2\sqrt[]{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt[]{ab}\)
\(\Rightarrow\dfrac{a+b}{2}\le\dfrac{2\sqrt[]{ab}}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}\le\sqrt[]{ab}\)
\(\Rightarrow\dfrac{2}{\dfrac{a+b}{2}}\le\dfrac{2}{\sqrt[]{ab}}\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{2}{\sqrt[]{ab}}\) (2)
Từ (1) và (2) suy ra\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\ge\dfrac{4}{a+b}\)
hay \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
giả sử \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1) đúng
\(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\\ \Rightarrow\left(a+b\right)^2\ge4ab\)
\(a^2+2ab+b^2\ge4ab\)
trừ hai vế với 4ab, ta được:
\(a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(2)
vì bất đẳng thức (2) luôn đúng nên bất đẳng thức (1) luôn đúng
dấu "=" xảy ra khi và chỉ khi a=b
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
Ta có :
\(VT=\left(\dfrac{1}{2}xy-\dfrac{1}{3}y\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy^2+\dfrac{1}{9}y^2\right)\)
\(=\dfrac{1}{8}x^3y^3+\dfrac{1}{12}x^2y^3+\dfrac{1}{18}xy^3-\dfrac{1}{12}x^2y^3-\dfrac{1}{18}xy^3-\dfrac{1}{27}y^3\)
\(=\dfrac{1}{8}x^3y^3-\dfrac{1}{27}y^3=VT\)
\(\Rightarrow dpcm\)
Vậy : ..............