Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)
*Chứng minh an là số tự nhiên.
Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:
\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n = k + 1 hay:
\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)
\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)
Vậy ta có đpcm.
Còn lại em chưa nghĩ ra
Cho dãy số a1;a2;...;an và số nguyên dương k≥n
Chứng minh rằng tồn tại tổng
nha bạnCậu Nhok Lạnh Lùng
(ai+ai+1+...+aj)⋮k (i<j≤n)
Ta có :
\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}\)
\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\)
\(=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Vậy : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+....+2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=2\left(\sqrt{n+1}-1\right)\left(đpcm\right)\)
câu1)
ta có ĐK...
xét x=0 là nghiệm,
xét x>0 thì vế trái <2
xét x<0 thì vế trái >2
vậy x=0
Bn tham khảo nè:
giả sử x + y = a với a là số hữu tỉ
=> y = a - x
mà a và x là hữu tỉ nên a - x cũng hữu tỉ
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n)
=> y cũng hữu tỉ
vô lý