Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-y\right)^3+4y\left(2x^2+y^2\right)\)
\(=x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3\)
\(=x^3+5x^2y+3xy^2+3y^3\)
\(=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
\(x^2+y^2+1\ge xy+x+y\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\left(1\right)\)
\(y^2+1\ge2\sqrt{y^2}=2y\left(2\right)\)
\(x^2+1\ge2\sqrt{x^2}=2x\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(2\left(x^2+y^2+1\right)\ge2\left(xy+x+y\right)\Leftrightarrow x^2+y^2+1\ge xy+x+y\)
Dấu "=" khi \(x=y\)
\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)
\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)