Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(VP=x^3+3x^2+2x\)
\(VP=x\left(x^2+3x+2\right)\)
\(VP=x\left[\left(x^2+x\right)+\left(2x+2\right)\right]\)
\(VP=x\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(VP=x\left(x+1\right)\left(x+2\right)\) ( đpcm )
Chúc bạn học tốt ~
a) x(x+1)(x+2)=(x2+x)(x+2)=x3+2x2+x2+2x=x3+3x2+3x
b)
(3x - 2)(4x - 5) - (2x - 1)(6x + 1) = 0
12x2 - 15x - 8x + 10 - 12x2 - 2x + 6x + 1 = 0
- 19x = - 11
x = 11/19
a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)
\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)
\(=9x^2-4-9x^2-6x-1+6x+3\)
\(=-2\) không phụ thuộc vào x
b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)
\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)
\(=x^2-1-x^2+4x-4-4x-12\)
\(=-17\)không phụ thuộc vào x.
\(VT=x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)\)
\(=x^3+3x^2+2x=VP\)
\(\Rightarrowđpcm\)
chỗ kia phải là \(\left(x^2+x\right)\left(x+2\right)\) mới đúng nha tú
a, Biến đổi vế trái :
\(VT=x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)=x^3+3x^2+2x\) 2x
b,\(\left(3x-2\right)\left(4x-5\right)-\left(2x-1\right)\left(6x+2\right)=0\)
\(\Leftrightarrow12x^2-15x-8x+10-\left(12x^2+4x-6x-2\right)=0\)
\(\Leftrightarrow12x^2-23x+10-12x^2+2x+2=0\)
\(\Leftrightarrow12-21x=0\)
\(\Leftrightarrow-21x=-12\)
\(\Leftrightarrow21x=12\)
\(\Leftrightarrow x=\frac{4}{7}\)
c,
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}-\frac{2\left(-x-1\right)}{x+1}\right]:\frac{x-1}{x}\)
\(=\)\(\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}+\frac{2\left(x+1\right)}{x+1}\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)
\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\)\(\left(đpcm\right)\)
ĐKXĐ:...
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)
\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)
ta có \(x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)\)
\(=x^3+2x^2+x^2+2x\)
\(=x^3+3x^2+2x\)( đpcm )
học tốt
Biến đổi VT ta có :
\(x\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2+x\right)\left(x+2\right)\)
\(=x^3+2x^2+x^2+2x\)
\(=x^3+\left(2x^2+x^2\right)+2x\)
\(=x^3+3x^2+2x=VP\)
Vậy \(x\left(x+1\right)\left(x+2\right)=x^3+3x^2+2x\)