K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

ta có: x^2+2x+2=x^2+x+x+2=x(x+1)+x+1+1=(x+1)(x+1)+1=(x+1)^2+1

từ đó bạn tự giải nhé

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

11 tháng 4 2021

f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

      =\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

      =\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)

=>f(x)≥\(\dfrac{3}{4}\)

=>đa thức trên vô nghiệm

11 tháng 4 2021

Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:

Xét x≥0 thì x+1>0

       x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0                               (1)

Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0                   (2)

Xét x≤-1 thì x<0 và x+1≤0. Do đó

    x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0                           (3)

Từ (1), (2), (3)=> đa thức f(x) vô nghiệm

25 tháng 4 2019

                                  Lời giải

\(m\left(x\right)=x^2-2x+1+2018=\left(x-1\right)^2+2018\ge2018>0\forall x\)

Đa thức trên vô nghiệm (đpcm)

\(M=x^2+8x+16+1=\left(x+4\right)^2+1>0\)

Do đó: M vô nghiệm

8 tháng 5 2022

\(\text{∆}=5^2-4.9\)

\(=25-36=-11< 0\)

⇒ phương trình vô nghiệm

8 tháng 5 2022

ta có x2 ≥0

5x≥0

mà 9 > 0

\(=>x^2+5x+9>0\)

hay chứng tỏ đa thức vô nghiệm

13 tháng 3 2017

\(x^2+2x+2=x^2+x+x+1+1=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow x^2+2x+2\) vô nghiệm

13 tháng 3 2017

\(\Rightarrow x^2+2x+2\) vô nghiệm

tk nha

7 tháng 5 2016

Đặt đa thức đó là A

Ta có: \(A=2\left(x^2+x+\frac{3}{2}\right)=2\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)

\(A=2\left(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right)\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)

\(A\ge\frac{5}{2}>0\)

Vậy A vô nghiệm

7 tháng 5 2016

2x^2>=0 voi moi x 

2x >=0 với mọi x 

3>0

Vậy đa thức trên vô nghiệm

5 tháng 5 2016

Ta có: -2x^2+x-3=-x^2-x^2+x-1/4-11/4= -(x^2-x+1/4)-x^2-11/4= -(x-1/2)^2-x^2-11/4

Đa thức trên luôn bé hơn 0. Do đó đa thức trên ko có nghiệm

5 tháng 5 2016

Ta có : -2x2+x  >/ 0

     => -2x2+x-3 >/ -3 < 0

 Vậy đa thức trên không có nghiệm (vô nghiệm)

22 tháng 4 2018

Ta có : 

2. x> 0       (1)

3 > 0             (2)

Từ (1) và (2) => 2x2 + 3 > 0

 ( Mà muốn được nghiệm thì 2x2 +3 = 0 )

=> 2x2 + 3 vô nghiệm ( điều phải chứng minh )

chúc bn hok tốt !!~

22 tháng 4 2018

Vì 2x^2 > 0 với mọi x                              (1)

      3 > 0                                                    (2)

Từ (1) và (2) => 2x^2 +3 > 0 với mọi x

                     => đa thức 2x^2+3 vô nghiệm

Vậy đa thức 2x^2 + 3 vô nghiệm