K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2022

undefinedbạn tham khảo nhé!

9 tháng 4 2022

`Answer:`

Trường hợp 1:  Nếu `x>=1` thì: \(x^{2016}\ge x^{2015};x^2\ge x\)

\(\Rightarrow x^{2016}-x^{2015}+x^2-x+1\ge1\forall x\ge1\)

`=>` Vô nghiệm

Trường hợp 2: Nếu `x<=0` thì: \(-x^{2015}\ge0;-x\ge0\)

`=>` Vô nghiệm

Trường hợp 3: Nếu `0<x<1`, giả dụ đa thức trên có nghiệm:

\(x^{2016}-x^{2015}+x^2-x+1=0\text{(*)}\)

\(\Rightarrow x^{2015}-x^{2014}+x-1+\frac{1}{x}=0\text{(**)}\)

Ta cộng lần lượt hai vế của (*)(**), ta được:

\(x^{2016}-x^{2014}+x^2+\frac{1}{x}=0\)

\(\Rightarrow x^{2016}+x^2+\frac{1}{x}=x^{2014}\left(***\right)\)

Điều này vô lí bởi với `0<x<1<=>x^2>x^2014`

\(x^{2016}>0;\frac{1}{x}>0\)

\(\Rightarrow x^{2016}+x^2+\frac{1}{x}>x^{2014}\)

10 tháng 7 2020

\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)

\(P\left(x\right)=x^2+2x+4\)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)

\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm ) 

\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)

=>  \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)

Ta có : \(P\left(x\right)=x^2+2x+4=0\)

\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)

8 tháng 8 2018

Ta có : 

\(x^4\ge0\)

\(x^2\ge0\)

mà \(x^4>x^2\)=> \(x^4-x^2\ge0\)=> \(x^4-x^2+1\ge1\)

Hay f(x) \(\ge\)0 => f(x) ko có nghiệm ( đpcm )

30 tháng 3 2021

Ta có: \(x^2+x+1\)

\(=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{2^2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

=> PT vô nghiệm

30 tháng 3 2021

Giả sử x2 + x + 1 = 0

Có a = 1 ; b = 1 ; c = 1

Δ = b2 - 4ac = 12 - 4.1.1 = 1 - 4 = -3

Δ < 0 nên đa thức vô nghiệm (đpcm)

16 tháng 6 2020

F(x) = 1 + x2 + x4 + x6 + ... + x2018 + x2020

Ta có : \(x^2\ge0\forall x\)

            \(x^4\ge0\forall x\)

            \(x^6\ge0\forall x\)

...

            \(x^{2020}\ge0\forall x\)

\(1>0\)

=> F(x) = \(1+x^2+x^4+x^6+...+x^{2018}+x^{2020}\ge1>0\)

=> F(x) vô nghiệm ( đpcm )

2 tháng 5 2017

Đặt: \(x^2=t\)

\(x^4+x^2+2\)

\(\Rightarrow t^2+t+2\)

\(=t^2-t-t+1+1\)

\(=t\left(t-1\right)-\left(t-1\right)+1\)

\(=\left(t-1\right)\left(t-1\right)+1\)

\(=\left(t-1\right)^2+1>0\forall t\)

Phương trình \(t^2+t+2\)vô nghiệm thì chính là \(x^4+x^2+2\)vô nghiệm

2 tháng 5 2017

ở chỗ phần đầu mình không hiểu cho lắm, bạn khỏi cần đặt x2=t thì mình mới hiẻu