Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có:
\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
nên\(\left(x+1\right)^2+1\ge1\)
\(\Rightarrow P\left(x\right)\ge1\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm
Câu 2:
Ta có:
\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
a: \(Q\left(x\right)=-3x^4-2x^4+8x^4+4x^3-4x^3+2x^2-3x+3x+\dfrac{5}{3}\)
=3x^4+2x^2+5/3
b: Q(x)=x^2(3x^2+2)+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
ta thấy cái khối -4x4+2x3-3x2+x>=0
=>cả chỗ kia >0 -->vô nghiệm
Ta có x4 \(\ge\)0 với mọi x
2x2 \(\ge\)0 với mọi x
\(\Rightarrow\)x^4-2x^2+2 \(\ge\) 2
\(\Rightarrow\) M(x) \(\ge\)2
VẬY đa thức M(x)=x^4-2x^2+2 ko có nghiệm
a)ta có \(\Delta=b^2-4ac\)=1\(^2\)-4*1*1=-3
=>phương trình vô nghiệm vì \(\Delta< 0\)
b)ta có x\(^2\)+x+1=x\(^2\)+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+1-\(\dfrac{1}{4}\)=\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)
vì \(\left(x+\dfrac{1}{2}\right)^2\)>0 \(\forall x\in R\)
\(\left(x+\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)>\(\dfrac{3}{4}\)\(\forall x\in R\)
=>GTNN =3/4 khi và chỉ khi \(\left(x+\dfrac{1}{2}\right)^2=0\)<=>x=-\(\dfrac{1}{2}\)
đa thức này có nghiệm nha bạn, nghiệm là x=1