Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)
Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)
\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)
\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)
\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)
\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))
\(=sin2\alpha=VP\)
Vậy đẳng thức được chứng minh.
Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.
cos^2(a-b)-cos^2(a+b)
=[cos(a-b)-cos(a+b)]*[cos(a-b)+cos(a+b)]
=[cosa*cosb+sina*sinb-cosa*cosb+sina*sinb]*[cosa*cosb+sina*sinb+cosa*cosb-sina*sinb]
=2*sina*sin*b*2*cosa*cosb
=sin2a*sin2b
+ Xét cos x = 0 ⇒ sin2x = 1 – cos2x = 1
(1) trở thành 1 = 0 (Vô lý).
+ Xét cos x ≠ 0, chia cả hai vế cho cos2x ta được:
Vậy phương trình có tập nghiệm
(k ∈ Z)
a, Đặt \(t=cos3x\left(t\in\left[-1;1\right]\right)\)
\(y=9-sin^23x-\sqrt{2}cos3x\)
\(=cos^23x-\sqrt{2}cos3x+8\)
\(\Leftrightarrow y=f\left(t\right)=t^2-\sqrt{2}t+8\)
\(\Rightarrow minf\left(t\right)\le y\le maxf\left(x\right)\)
\(\Rightarrow min\left\{f\left(-1\right);f\left(1\right);f\left(\dfrac{\sqrt{2}}{2}\right)\right\}\le y\le max\left\{f\left(-1\right);f\left(1\right);f\left(\dfrac{\sqrt{2}}{2}\right)\right\}\)
\(\Rightarrow\dfrac{15}{2}\le y\le9+\sqrt{2}\)
\(\Rightarrow y_{max}=9+\sqrt{2}\)
b, Đặt \(t=sin3x\left(t\in\left[-1;1\right]\right)\)
\(y=3sin3x-8cos^23x+4\)
\(=3sin3x+8-8cos^23x-4\)
\(=8sin^23x+3sin3x-4\)
\(\Leftrightarrow y=f\left(t\right)=8t^2+3t-4\)
\(\Rightarrow minf\left(x\right)\le y\le maxf\left(t\right)\)
\(\Rightarrow min\left\{f\left(-1\right);f\left(1\right);f\left(-\dfrac{3}{16}\right)\right\}\le y\le max\left\{f\left(-1\right);f\left(1\right);f\left(-\dfrac{3}{16}\right)\right\}\)
\(\Rightarrow-\dfrac{137}{32}\le y\le7\)
\(\Rightarrow y_{max}=7\)
\(a)\;sin(\alpha + \beta ).sin(\alpha - \beta ) = \;\frac{1}{2}.\left[ {cos\left( {\alpha + \beta - \alpha + \beta } \right) - cos\left( {\alpha + \beta + \alpha - \beta } \right)} \right]\)
\(\begin{array}{l} = \;\frac{1}{2}.(cos2\beta - cos2\alpha ) = \;\frac{1}{2}.(1 - 2si{n^2}\beta - 1 + 2si{n^2}\alpha )\\ = si{n^2}\alpha - si{n^2}\beta \end{array}\)
\(\begin{array}{l}b)\;co{s^4}\alpha - co{s^4}\left( {\alpha - \frac{\pi }{2}} \right) = \;co{s^4}\alpha - si{n^4}\alpha \\ = \;(co{s^2}\alpha + si{n^2}\alpha )(co{s^2}\alpha - si{n^2}\alpha )\\ = \;co{s^2}\alpha -si{n^2}\alpha = cos2\alpha .\end{array}\)
\(cos^2\left(a-b\right)-sin^2\left(a+b\right)\)
\(=\left(cosa.cosb+sina.sinb\right)^2-\left(sina.cosb+cosa.sinb\right)^2\)
\(=cos^2a.cos^2b+sin^2a.sin^2b-sin^2a.cos^2b-cos^2a.sin^2b\)
\(=cos^2b\left(cos^2a-sin^2a\right)-sin^2b\left(cos^2a-sin^2a\right)\)
\(=\left(cos^2b-sin^2b\right)\left(cos^2a-sin^2a\right)\)
\(=cos2a.cos2b\left(dpcm\right)\)