Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x^3+x^2-2x+a⋮x+1\)
\(\Leftrightarrow x^3+x^2-2x-2+a+2⋮x+1\)
=>a+2=0
hay a=-2
b: \(2x^3-4x^2-3a⋮2x-3\)
\(\Leftrightarrow2x^3-3x^2-x^2+1.5x-1.5x+2.25-3a-2.25⋮2x-3\)=>-3a-2,25=0
=>-3a=2,25
hay a=-0,75
c: \(4x^4+3x^2-ax+3⋮x+3\)
\(\Leftrightarrow4x^4+12x^3-12x^3-36x^2+39x^2+117x-ax+3⋮x+3\)
\(\Leftrightarrow-ax+3⋮x+3\)
\(\Leftrightarrow-ax-3a+3+3a⋮x+3\)
=>3a+3=0
hay a=-1

1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh) 1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh) 1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh)
1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh)

Bài 2:Tìm x biết
(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

a: \(\Leftrightarrow3x^3-2x^2+6x^2-4x-3x+2+a-2⋮3x-2\)
=>a-2=0
=>a=2
b: \(\Leftrightarrow3x^3-2x^2+6x^2-4x-3x+2+3⋮3x-2\)
=>\(3x-2\in\left\{1;-1;3;-3\right\}\)
mà x là số nguyên
nên x=1
c: \(\Leftrightarrow x^2+x-3x-3-a+3⋮x+1\)
=>3-a=0
=>a=3

a, A=(x+y)(x+2y)(x+3y)(x+4y) + y^4
=[(x+y)(x+4y)][(x+2y)(x+3y)]+y^4
=(x^2+5xy+4y^2)(x^2+5xy+6y^2) +y^4
=[(x^2+5xy+5y^2)-y^2][(x^2+5xy+5y^2) +y^2]+y^4
=(x^2+5xy+5y^2)^2 -y^4+y^4
=[(x^2+5xy+5y^2)^2 là 1 số chính phương (vì x,ythuộc Z)