K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

Đặt \(ƯCLN\left(5m+1,4m+1\right)=d\) (với \(d\inℕ^∗\))

\(\Rightarrow\left\{{}\begin{matrix}5m+1⋮d\\4m+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}4\left(5m+1\right)⋮d\\5\left(4m+1\right)⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}20m+4⋮d\\20m+5⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(20m+5\right)-\left(20m+4\right)⋮d\) 

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(5m+1,4m+1\right)=1\), suy ra \(5m+1\) và \(4m+1\) là 2 số nguyên tố cùng nhau.

9 tháng 8 2023

   Gọi ƯCLN(5m+1,4m+1) là d \(\left(d\ne0\right)\) 

=> \(5m+1⋮d;4m+1⋮d\) 

=> \(4\left(5m+1\right)⋮d;5\left(4m+1\right)⋮d\) 

=> \(20m+4⋮d;20m+5⋮d\) 

=> \(\left(20m+5\right)-\left(20m+4\right)⋮d\) 

=> \(1⋮d\) 

=> \(d=1\) 

Vậy 5m +1 và 4m +1 là hai số nguyên tố cùng nhau

22 tháng 7 2016

câu 1 :

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

22 tháng 7 2016

bài 1=7

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

8 tháng 6 2016

Gọi ƯCLN(5m+3;3m+2)=d (d nguyên) thì (5m+3) chia hết cho d và (3m+2) chia hết cho d.

Do đó: [5.(3m+2)-3.(5m+3)] chia hết cho d => (15m+10-15m-9) chia hết cho d=> 1 chia hết cho d mà d nguyên nên d=1 hoặc d=-1.

Chứng tỏ 5m+3 và 3m+2 nguyên tố cùng nhau.

21 tháng 11 2021

Gọi d là ƯCLN(12n+1 ; 30n+2)

=> 6(12n + 1 ) - 2(30n + 2 ) chia hết cho d

=> 2 chia hết cho d

Mà 12n+1 lẻ

=> d = 1

Vậy ........

21 tháng 11 2021

Gọi d là ước chung của 12n+1 và 30n+2

\(\Rightarrow\)12n+1 \(⋮\)d và 30n+2\(⋮\)d

\(\Rightarrow\)60n+5\(⋮\)d và 60n+4\(⋮\)d

\(\Rightarrow\)60n+5-60n-4\(⋮\)d

\(\Rightarrow\)1\(⋮\)\(\Rightarrow\)d=1

vậy 12n+1 và 30n+2 là hai số nguyên tố cùng nhau

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
Gọi d là ƯCLN của $4n+1$ và $6n+2$

Ta có $4n+1\vdots d$ mà $4n+1$ lẻ nên $d$ lẻ

$6n+2\vdots d$

$2(3n+1)\vdots d$

Vì $d$ lẻ nên $3n+1\vdots d$

Vì $4n+1\vdots d, 3n+1\vdots d$

$\Rightarrow (4n+1)-(3n+1)\vdots d$

Hay $n\vdots d$

Kết hợp với $4n+1\vdots d\Rightarrow 1\vdots d$

Vậy $d=1$, tức là $4n+1, 6n+2$ nguyên tố cùng nhau