Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Xét A=2n+1/3n+1
Gọi d là ƯCLN của 2n+1 và 3n+1, ta có
2n+1 chia hết cho d \(\Rightarrow\)3(2n+1) chia hết cho d \(\Rightarrow\)6n+3 chia hết cho d (1)
3n+1 chia hết cho d \(\Rightarrow\)2(3n+1) chia hết cho d \(\Rightarrow\)6n+2 chia hết cho d (2)
Lấy (1) - (2), ta có:
6n+3-(6n+2) chia hết cho d \(\Rightarrow\)6n+3-6n-2 chia hết cho d \(\Rightarrow\)(6n-6n)+(3-2) chia hết cho d
\(\Rightarrow\)1 chia hết cho d \(\Rightarrow\)d=1
Vì ƯCLN(2n+1;3n+1)=1 nên 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. Do đó A=2n+1/3n+1 là phân số tối giản (đpcm)
Xét B=12+1/30+1
Cách giải tương tự như trên, ta có 5(12n+1)-2(30n+2) chia hết cho d
\(\Rightarrow\)60n+5-(60n+4) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d=1
Suy ra B=12n+1/30n+2 là phân số tối giản (đpcm)
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1/2n+3 là phân số tối giản
b: Gọi d=UCLN(2n+5;4n+8)
\(\Leftrightarrow4n+10-4n-8⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+5 là số lẻ
nên n=1
=>2n+5/4n+8 là phân số tối giản