K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=-2bc\)

\(VT=ab-ac-ab-bc+ac-bc=-2bc=VP\)

Vậy ta có đpcm 

2 tháng 7 2017

a) VT: a(b - c) - b(a + c) + c(a - b)

= ab - ac - ab - bc + ac - bc

= -2bc

Vậy a(b - c) - b(a + c) + c(a - b) = -2bc.

b) VT: a(1 - b) + a(a2 - 1)

= a - ab + a3 - a

= a3 - ab

= a(a2 - b)

Vậy a(1 - b) + a(a2 - 1) = a(a2 - b).

2 tháng 9 2020

Bài 5 là quá kiểu hiển nhiên roài phá ra là xong mà :))))))

Bài 6:

\(A=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\) 

\(B=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

\(C=\left(2x-7\right)^2=\left(2.2-7\right)^2=\left(4-7\right)^2=\left(-3\right)^2=9\)

Bài 1:

a) \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)

\(=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)(Đpcm)

b) \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)(Đpcm)

Bài 2:

a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)

b)\(25x^2-30x+9=\left(5x\right)^2-2.5.3x+3^2=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

c)\(4x^2-28x+49=\left(2x\right)^2-2.2.7x+7^2=\left(2x-7\right)^2=\left(2.4-7\right)^2=1^2\)

25 tháng 7 2019

a+b+c = 2p => 4p = 2(a+b+c); p=(a+b+c)/2

VP = 4p(p-a) = 2(a+b+c)(\(\frac{a+b+c}{2}-a\))

= \(2\left(a+b+c\right)\left(\frac{a+b+c-2a}{2}\right)\)

=\(2\left(a+b+c\right)\cdot\frac{b+c-a}{2}=\left(a+b+c\right)\left(b+c-a\right)\)

\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)

\(=2bc+b^2+c^2-a^2\) = VT (đpcm)

Y
4 tháng 6 2019

\(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(a+b+c\right)\left(b+c-a\right)\)

\(=2p\left(a+b+c-2a\right)\)

\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)

4 tháng 6 2019

biến đổi vế phải ta được:

4p(p -a ) = 4p\(^2\)-4pa

=(2p)\(^2\)-2p.2a

=(a+b+c)\(^2\)-2a(a+b+c)

=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)

=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)

26 tháng 9 2019

\(2bc+b^2+c^2-a^2.\)'

\(=\left(2bc+b^2+c^2\right)-a^2.\)

\(=\left(b+c\right)^2-a^2\)

Theo đề ta có \(a+b+c=2p\)

\(\Rightarrow b+c=2p-a\)

\(\Rightarrow\left(b+c\right)^2-a^2\)

\(=\left(b+c+a\right)\left(b+c-a\right)\)

\(=\left(2p-a+a\right)\left(2p-a-a\right)\)

\(=2p\left(2p-2a\right)\)

\(=2p\cdot2\left(p-a\right)=4p\left(p-a\right)\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)

23 tháng 8 2020

2bc + b2 + c2 - a2

= ( b2 + 2ab + c2 ) - a2

= ( b + c )2 - a2

= ( b + c - a )( b + c + a ) (*)

Từ gt a + b + c = 2p => b + c = 2p - a

Thế vào (*) ta được

( 2p - a - a )( 2p - a + a )

= ( 2p - 2a )2p

= 4p2 - 4pa

= 4p( p - a ) ( đpcm )

5 tháng 3 2021

a) Áp dụng bất đẳng thức AM-GM ta có ngay :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2\sqrt{\frac{ab^2c}{ac}}=2\sqrt{b^2}=2\left|b\right|=2b\)( do b > 0 )

=> đpcm

Đẳng thức xảy ra <=> a = b = c

b) Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)(1) ( như a) đấy :)) )

tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)(2) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)(3)

Cộng (1), (2), (3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a = b = c

c) \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

\(=\frac{a^3}{2ab}+\frac{b^3}{2ab}+\frac{b^3}{2bc}+\frac{c^3}{2bc}+\frac{c^3}{2ca}+\frac{a^3}{2ca}\)

\(=\frac{a^2}{2b}+\frac{b^2}{2a}+\frac{b^2}{2c}+\frac{c^2}{2b}+\frac{c^2}{2a}+\frac{a^2}{2c}\)(I)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\left(I\right)\ge\frac{\left(a+b+b+c+c+a\right)^2}{2b+2a+2c+2b+2a+2c}=\frac{\left[2\left(a+b+c\right)\right]^2}{4\left(a+b+c\right)}=\frac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)}=a+b+c\)

hay \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\)(đpcm)

Đẳng thức xảy ra <=> a = b = c

5 tháng 3 2021
Chia cả 2 vế cho b ta có : a2+c2>=2ac luôn đúng
31 tháng 7 2018

a3 + b3 + c3 = ( a + b + c). +( a2 + b2 + c2 - ab - bc - ca) + 3abc

                    = 0 . (a2 + b2 + c2 - ab - bc - ca ) + 3abc

                    = 3abc      ( đpcm)

31 tháng 7 2018

câu 2 chưa rõ đề nha